
Find Actual Solutions for Nonlinear Equations in Form of 

𝑦"(𝑥) + 𝑎 ∙ [𝑦′(𝑥)]2 + 𝑏 = 0  𝑎𝑛𝑑 [𝑦′(𝑥)]2 + 𝑎 ∙ cos [𝑦(𝑥)] + 𝑏 = 0 

 
Motivation and Research 

 
Motivation 

 

(1) Skydiving is beautiful, heart-racing, and exhilarating on film. I admire freefall 

cameramen’s skill to control the diving speed under gravitational acceleration and still shoot 

good movies. It is intriguing to find IB examiners hope students to learn more about the speed 

change of skydiving by putting it as an examination question. (ref.1) 

 

To understand it in depth, I found a good article in College Physics (ref. 2) well 

demystifying how skydivers control their terminal speed by changing their cross sections facing 

ground. However, the nonlinear differential equation, 
𝑑2𝑆(𝑡)

𝑑𝑡2 = −𝑔 +
1

2𝑚
𝐶𝜌𝐴 (

𝑑𝑆(𝑡)

𝑑𝑡
)

2
   (where 𝑆: 

height 𝑔: gravitational acceleration 𝐶: drag coefficient 𝐴: cross section facing ground 𝜌 air 

density 𝑚: person’s mass), is really daunting. I looked up college calculus but failed to find the 

resolution. 

 

(2) As I tried to build a pendulum of true isochronism for my Physics IA, I derived, based 

on energy conservation, the differential equation describing the time function of swing angle, 

𝜃(𝑡), for a pendulum. It is [
𝑑𝜃(𝑡)

𝑑𝑡
]2 =

2𝑔

𝐿
[𝑐𝑜𝑠𝜃(𝑡) − 𝑐𝑜𝑠𝛼] 𝑜𝑟 

𝑑𝜃(𝑡)

𝑑𝑡
= ±√

2𝑔

𝐿
[𝑐𝑜𝑠𝜃(𝑡) − 𝑐𝑜𝑠𝛼]. 

(where 𝜃: swing angle, 𝛼: initial swing angle, g: gravitational acceleration, L: pendulum’s 
length) 

 
 

It looks like a neat 1st order differential equation, much simpler than the 2nd order one of 

skydiving dynamics. However, it seems none of resolutions I have learned from Math HL is 

applicable to resolve this. A paper from University of Connecticut (ref.3) suggests it be resolved 

by “Elliptic Integral of the First Kind”. 

 

To get rid of the trauma that even ordinary engineering questions can be only handled by 

mathematicians, I need to figure out a way to depict what the solutions of those differential 

equations look like. 

 

 



In most of the rest, I will often use general forms to abstractly express the Skydiving 

equation and Pendulum equation as below. 

 

Skydiving Equation: 

𝑑2𝑆(𝑡)

𝑑𝑡2
= −𝑔 +

1

2𝑚
𝐶𝜌𝐴 [

𝑑𝑆(𝑡)

𝑑𝑡
]

2

→ (𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑓𝑜𝑟𝑚): 𝑦′′(𝑥) + 𝑎 ∙ [𝑦′(𝑥)]2 + 𝑏 = 0 

 

Pendulum Equation: 

[
𝑑𝜃(𝑡)

𝑑𝑡
]2 =

2𝑔

𝐿
[𝑐𝑜𝑠𝜃(𝑡) − 𝑐𝑜𝑠𝛼] → (𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑓𝑜𝑟𝑚): [𝑦′(𝑥)]2 + 𝑎 ∙ cos(𝑦(𝑥)) + 𝑏 = 0 

 

Research 

 

(i) Methods to resolve 1st differential equation 

 

Through IB Diploma Programme math HL, I have learned several skills and procedures 

to find the solutions for some types of 1st order differential equations that can be written in the 

forms below. (ref. 4) 

 

Type I. 
𝑑𝑦

𝑑𝑥
= 𝑔(𝑥)   (e.g. 

𝑑𝑦

𝑑𝑥
= 𝑒2𝑥) 

Type II. 
𝑑𝑦

𝑑𝑥
=

𝑔(𝑥)

ℎ(𝑦)
  (called separable) (e.g. 

𝑑𝑦

𝑑𝑥
=

𝑥

𝑦2) 

Type III. 
𝑑𝑦

𝑑𝑥
= 𝑔(

𝑦

𝑥
)  (called homogeneous) (e.g. 

𝑑𝑦

𝑑𝑥
=

𝑦

𝑥
− 1) 

Type IV. 
𝑑𝑦

𝑑𝑥
+ 𝑃(𝑥)𝑦 = 𝑄(𝑥)  (e.g. 

𝑑𝑦

𝑑𝑥
+ 3𝑥2𝑦 = 6𝑥2) 

 

It is easy to get lost in those type-orientated approaches even though the solutions are only 

for a portion of 1st order differential equations. Besides, meeting one of the 4 types is not 

sufficient for an equation to be resolved to have a solution in  closed form. For instance, the 

Pendulum equation 
𝑑𝜃(𝑡)

𝑑𝑡
= ±√

2𝑔

𝐿
[𝑐𝑜𝑠𝜃(𝑡) − 𝑐𝑜𝑠𝛼] falls in Type II (

𝑑𝑦

𝑑𝑡
=

±√
2𝑔

𝐿
(𝑐𝑜𝑠𝑦 − 𝑐𝑜𝑠𝛼)) but we fail to find the integral, ∫

1

√
2𝑔

𝐿
(𝑐𝑜𝑠𝑦−𝑐𝑜𝑠𝛼)

𝑑𝑦. 

 

(ii) Methods to solve 2nd differential equation 

 

2nd differential equations are not addressed in IB math HL. I turn to Thomas’ Calculus (ref. 

5) for resolution of 2nd order differential equations. Only the two following types of 2nd order 

differential equation are considered possibly solvable to have closed form solutions:  

 

1. Linear nonhomogeneous differential equation 

  

𝑎
𝑑2𝑦(𝑥)

𝑑𝑥2
+ 𝑏

𝑑𝑦(𝑥)

𝑑𝑥
+ 𝑐𝑦(𝑥) = 𝐺(𝑥) 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

 



2. Euler Equation 

 

𝑎𝑥2
𝑑2𝑦(𝑥)

𝑑𝑥2
+ 𝑏𝑥

𝑑𝑦(𝑥)

𝑑𝑥
+ 𝑐𝑦(𝑥) = 0, 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

  

 Obviously, the Skydiving equation does not fall into these two categories. 

 

(iii) Power Series for linear differential equation 

 

My math teacher advised me to make good use of Maclaurin Series. I notice a similar 

“Power Series Method” is also demonstrated in Thomas Calculus (ref.5). 

 

Next, I will apply Power Series Method to solve the Skydiving equation in general form 

𝑦(2)(𝑥) + 𝑎[𝑦(1)(𝑥)]
2

+ 𝑏 = 0 … … … . . (𝐸𝑞. 1) 

 

Express y(x) in Maclaurin Series:  

𝑦(𝑥) = ∑ 𝐶𝑛𝑥𝑛 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + 𝐶3𝑥3 + 𝐶4𝑥4 + 𝐶5𝑥5 + ⋯
∞

𝑛=0
 

Then 

𝑦(1)(𝑥) = ∑ 𝑛𝐶𝑛𝑥𝑛−1 = 𝐶1 + 2𝐶2𝑥 + 3𝐶3𝑥2 + 4𝐶4𝑥3 + 5𝐶5𝑥4 + ⋯
∞

𝑛=0
 

𝑦(2)(𝑥) = ∑ 𝑛(𝑛 − 1)𝐶𝑛𝑥𝑛−2
∞

𝑛=0
 

            = (1 ∙ 2)𝐶2 + (2 ∙ 3)𝐶3𝑥 + (3 ∙ 4)𝐶4𝑥2 + (4 ∙ 5)𝐶5𝑥3 + ⋯ 

 

With 𝑦(1)(𝑥), 𝑦(2)(𝑥) in Eq.1 replaced with the expressions above, 

[(1 ∙ 2)𝐶2 + (2 ∙ 3)𝐶3𝑥 + (3 ∙ 4)𝐶4𝑥2 + (4 ∙ 5)𝐶5𝑥3 + ⋯ ]
+ 𝑎[𝐶1 + 2𝐶2𝑥 + 3𝐶3𝑥2 + 4𝐶4𝑥3 + 5𝐶5𝑥4 + ⋯ ]2 + 𝑏 = 0 

  

 Handle [𝐶1 + 2𝐶2𝑥 + 3𝐶3𝑥2 + 4𝐶4𝑥3 + 5𝐶5𝑥4 + ⋯ ]2 first, as below 

 
The resultant coefficient for each 𝑥𝑛 for the polynomials on the left side shall be 0. 



(1 ∙ 2)𝐶2 + 𝑎(1𝐶1 ∙ 1𝐶1) + 𝑏 = 0 
(2 ∙ 3)𝐶3 + 𝑎(1𝐶1 ∙ 2𝐶2 + 2𝐶2 ∙ 1𝐶1) = 0 

(3 ∙ 4)𝐶4 + 𝑎(1𝐶1 ∙ 3𝐶3 + 2𝐶2 ∙ 2𝐶2 + 3𝐶3 ∙ 1𝐶1) = 0 
(4 ∙ 5)𝐶5 + 𝑎(1𝐶1 ∙ 4𝐶4 + 2𝐶2 ∙ 3𝐶3 + 3𝐶3 ∙ 2𝐶2 + 4𝐶4 ∙ 1𝐶1) = 0 

⋯ ⋯ 

→ (𝑛 − 1) ∙ 𝑛 ∙ 𝐶𝑛 

     +𝑎(1𝐶1 ∙ (𝑛 − 1)𝐶𝑛−1 + 2𝐶2 ∙ (𝑛 − 2)𝐶𝑛−2 + ⋯ + (𝑛 − 2)𝐶𝑛−2 ∙ 2𝐶2 + (𝑛 − 1)𝐶𝑛−1 ∙ 1𝐶1) 

= 0, 𝑛 ≥ 3 

 

 From the above, we know 𝐶𝑛 can always be learned from {𝐶0, 𝐶1, … , 𝐶𝑛−1} by 

𝑊𝑖𝑡ℎ 𝐶0, 𝐶1 𝑔𝑖𝑣𝑒𝑛, 𝐶2 =
−𝑎(1𝐶1 ∙ 1𝐶1) − 𝑏

1 ∙ 2
, 𝐶𝑛 =

−𝑎 ∑ 𝑖𝐶𝑖(𝑛 − 1)𝐶𝑛−1
𝑛−1
𝑖=1

(𝑛 − 1)𝑛
, ∀𝑛 ≥ 3  

 

 It means we can sequentially, starting from 𝐶0 𝑎𝑛𝑑 𝐶1, work out all the coefficients of 

Maclaurin Series. 

 

  

 

 

 

 

 

 

 

  

Below is the python code to easily get the coefficients, up to n=10, with given 𝐶0, 𝐶1 

 

c[0] = 5000 #initial value 

c[1] = 0 #initial value 

c[2] = 1/2*(-a*c[1]**2-b) 

k = 10 

n = 3 

while n <= k: 

 

    index = 1 

    sum = 0 

    while index < n: 

        c[n] += -a*(index*(n-index)*c[index]*c[n-index])/((n-1)*n) 

        index += 1 

    n+=1  

 

 Striking a hot iron, let us try out Power Series Method on Pendulum equation. 

[𝑦(1)(𝑥)]2 + 𝑎 ∙ cos[𝑦(𝑥)] + 𝑏 = 0 … … … … . . (𝐸𝑞. 2) 

 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠 𝑦(𝑥) 𝑖𝑛 𝑀𝑎𝑐𝑙𝑎𝑢𝑟𝑖𝑛 𝑆𝑒𝑟𝑖𝑒𝑠: 

Power Series Method could solve Skydiving equation: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑦(2)𝑥 + 𝑎[𝑦(1)𝑥]
2

+ 𝑏 = 0 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑦(𝑥) = 𝐶0 + 𝐶1𝑥 +
−𝑎𝐶1

2 − 𝑏

2
𝑥2 + (−𝑎) ∙ ∑

∑ 𝑖𝐶𝑖(𝑛 − 𝑖)𝐶𝑛−𝑖
𝑛−1
𝑖=1

(𝑛 − 1)𝑛
𝑥𝑛

∞

𝑛=3

 

, 𝑤ℎ𝑒𝑟𝑒 𝐶0, 𝐶1 𝑎𝑟𝑒 𝑔𝑖𝑣𝑒𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑎 =  −
1

2𝑚
𝐶𝜌𝐴, 𝑏 = 𝑔 

 

 

 



𝑦(𝑥) = ∑ 𝐶𝑖𝑥
𝑖 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + 𝐶3𝑥3 + 𝐶4𝑥4 + 𝐶5𝑥5 + ⋯

∞

𝑖=0
 

𝑦(1)(𝑥) = ∑ 𝑛𝐶𝑛𝑥𝑛−1 = 𝐶1 + 2𝐶2𝑥 + 3𝐶3𝑥2 + 4𝐶4𝑥3 + 5𝐶4𝑥4 …
∞

𝑛=0
 

𝑦(2)(𝑥) = ∑ 𝑛(𝑛 − 1)𝐶𝑛𝑥𝑛−2
∞

𝑛=0
= (1 ∙ 2)𝐶2 + (2 ∙ 3)𝐶3𝑥 + (3 ∙ 4)𝐶4𝑥2 + (4 ∙ 5)𝐶5𝑥3 + ⋯ 

 

With 𝑦(0)(𝑥), 𝑦(1)(𝑥) in Eq.2 replaced with the expressions above, 

[𝐶1 + 2𝐶2𝑥 + 3𝐶3𝑥2 + 4𝐶4𝑥3 + 5𝐶4𝑥4 … ]2 

              +𝑎 ∙ cos[𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + 𝐶3𝑥3 + 𝐶4𝑥4 + 𝐶5𝑥5 + ⋯ ] + 𝑏 = 0 

 

 Recall that Power Series Method works on the base that all the coefficients of the 

resultant polynomials should be made zero. This method might fail this equation since cos(𝐶0 +
𝐶1𝑥 + 𝐶2𝑥2 + 𝐶3𝑥3 + 𝐶4𝑥4 + 𝐶5𝑥5 + ⋯ ) cannot be easily broken down into neat polynomials. 

 

(iv) “Proprietary(?) Deep Differentiation” Method for differential equations of infinitely 

differentiable functions 

When Power Series Method is applied to get coefficients of Maclaurin Series, 

𝑦(𝑥) = 𝑦(0) +
𝑦(1)(0)

1!
𝑥 +

𝑦(2)(0)

2!
𝑥2 +

𝑦(3)(0)

3!
𝑥3 + ⋯ 

it is to substitute the polynomial forms of 𝑦(𝑥), 𝑦(1)(𝑥), 𝑦(2)(𝑥), …into a differential 

equation and then to make zero the coefficients of each resultant 𝑥𝑛 term to find 

𝐶𝑛(=
𝑦(𝑛)(0)

𝑛!
). Then it came to my mind: Why not directly find 𝒚(𝒏)(𝟎)? 

 

So next, I will work out 𝒚(𝒏)(𝟎) for the tenacious Pendulum equation: 

[𝑦(1)(𝑥)]2 + 𝑎 ∙ cos[𝑦(𝑥)] + 𝑏 = 0 … … … . (𝐸𝑞. 2) 

 

Rearrange the equation to have  

[𝑦(1)(𝑥)]2 = −𝑎 ∙ cos(𝑦(𝑥)) − 𝑏 

By differentiating both sides 

2𝑦(1)(𝑥)𝑦(2)(𝑥) = 𝑎 ∙ sin(𝑦(𝑥)) 𝑦(1)(𝑥) 

→ 𝑦(2)(𝑥) =
𝑎

2
∙ sin (𝑦(𝑥)) 

→ 𝑦(3)(𝑥) =
𝑎

2
∙ cos (𝑦(𝑥))𝑦(1)(𝑥) 

→ 𝑦(4)(𝑥) = −
𝑎

2
∙ sin (𝑦(𝑥))[𝑦(1)(𝑥)]2 +

𝑎

2
∙ cos (𝑦(𝑥))𝑦(2)(𝑥) 

→ 𝑦(5)(𝑥) = ⋯ 

 

We can keep differentiating it to sequentially get all 𝑦(𝑛)(𝑥), ∀𝑛 ∈ 𝑁  
 

With 𝑦(0) given and 𝑥 = 0 substituted into the formulas above, we will get 𝑦(𝑛)(0) as 

shown below 

 

 [𝑦(1)(0)]2 = −𝑎 ∙ cos(𝑦(0)) − 𝑏 



→ 𝑦(1)(0) = ±√−𝑎 ∙ cos(𝑦(0)) − 𝑏 

→ 𝑦(2)(0) =
𝑎

2
∙ sin(𝑦(0)) 

→ 𝑦(3)(0) =
𝑎

2
∙ cos(𝑦(0)) 𝑦(1)(0) 

→ 𝑦(4)(0) = −
𝑎

2
∙ sin(𝑦(0))[ 𝑦(1)(0)]2 +

𝑎

2
∙ cos(𝑦(0)) 𝑦(2)(0) 

→ 𝑦(5)(0) = ⋯ 

 

 Therefore, we can find out all the 𝑦(𝑛)(0) sequentially to make the actual solution for 

Pendulum Equation in Maclaurin Series. 

 

 This method is applicable to all differential equations of infinitely differentiable 

functions. Therefore, we can use it to resolve the Skydiving equations as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Exploration: Point-by-Point Method 

 
 Even though I have solved Skydiving and Pendulum equations in Maclaurin Series, it 

does not really ease my concern. Excel could be used for calculation of coefficients, but it is still 

tedious. Besides, Maclaurin Series has infinite terms --- any truncation causes inaccuracy which I 

do not have a way to estimate. This is probably why a solution in infinite series is not considered 

as in closed form though it is made of ordinary polynomials. I do need to figure out alternatives. 

 

 I scrutinize the fundamental of differentiation: 

𝑦(1)(𝑥0) =
𝑑𝑦(𝑥)

𝑑𝑥
|𝑥=𝑥0

= lim
ℎ→0

𝑦(𝑥0 + ℎ) − 𝑦(𝑥0)

ℎ
 

 

After rearrangement, it tells : 𝑦(0)(𝑥0 + ℎ) = 𝑦(0)(𝑥0) + 𝑦(1)(𝑥0) ∙ ℎ    , 𝑤ℎ𝑒𝑟𝑒 ℎ → 0   
 
Similarly, 

𝑦(2)(𝑥0) =
𝑑𝑦(1)(𝑥)

𝑑𝑥
|

𝑥=𝑥0

=lim
ℎ→0

𝑦(1)(𝑥0+ℎ)−𝑦(1)(𝑥0)

ℎ
 

equivalently says 𝑦(1)(𝑥0 + ℎ) = 𝑦(1)(𝑥0) + 𝑦(2)(𝑥0) ∙ ℎ 

 

 I draw a picture to have a concrete idea of the mathematical expressions above 

 
  

For Skydiving equation 

𝑦(2)(𝑥) + 𝑎[𝑦(1)(𝑥)]2 + 𝑏 = 0, ∀𝑥 

 

 ,with 𝑦(0)(0), 𝑦(1)(0) given, we can know 𝑦(0)(ℎ) by  𝑦(0)(ℎ) = 𝑦(0)(0) + 𝑦(1)(0) ∙ ℎ. 

 If we would like to know 𝑦(0)(2ℎ), we need to know 𝑦(2)(0); then,  

𝑦(1)(ℎ) = 𝑦(1)(0) + 𝑦(2)(0) ∙ ℎ  

 𝑦(0)(2ℎ) = 𝑦(0)(ℎ) + 𝑦(1)(ℎ) ∙ ℎ 

as instructed by the following figure. 

 



Because equation 

𝑦(2)(𝑥) + 𝑎[𝑦(1)(𝑥)]2 + 𝑏 = 0, ∀𝑥 

 sustains for all 𝑥, we can use substitution 𝑥 = 0 to get: 

𝑦(2)(0) + 𝑎[𝑦(1)(0)]2 + 𝑏 = 0 

𝑦(2)(0) = −𝑎[𝑦(1)(0)]2 − 𝑏 

  

 𝑦(2)(0) is thus acquired from 𝑦(1)(0) and 𝑦(0)(0). Then we follow to get 𝑦(1)(ℎ) and 

𝑦(0)(2ℎ) accordingly. 

 
 The similar way could be iteratively applied until we get the target y(𝑛ℎ). 

 

 
It looks feasible to get all the way down to learn 𝑦(0)(𝑛ℎ), ∀𝑛 ∈ 𝑁. Because ℎ → 0, it 

implies we can get all 𝑦(𝑥), ∀𝑥 ≥ 0 as long as 𝑦(0)(0) and 𝑦(1)(0) given.  

 

           Retracing this method, with  𝑦(0)(𝑘ℎ), 𝑦(1)(𝑘ℎ) known in priori, the operation to get 

𝑦(0)[(𝑘 + 1)ℎ], 𝑦(1)[(𝑘 + 1)ℎ] consists of two easy steps below  

 

𝑆𝑡𝑒𝑝 #1:    𝑦(2)(𝑘ℎ) = −𝑎[𝑦(1)(𝑘ℎ)]2 − 𝑏    
(substitute x=kh for [𝑦(1)(𝑥)]2 = −𝑎 ∙ cos(𝑦(𝑥)) − 𝑏)  

𝑆𝑡𝑒𝑝 #2   𝑦(0)[(𝑘 + 1)ℎ] = 𝑦(0)(𝑘ℎ) + 𝑦(1)(𝑘ℎ) × ℎ 
                  𝑦(1)[(𝑘 + 1)ℎ] = 𝑦(1)(𝑘ℎ) + 𝑦(2)(𝑘ℎ) × ℎ 
 



          Step#2 is from the definition of differentiation and is independent of equation types. This 

algorithm is apparently applicable to all nonlinear different equations which could make the form 

of  𝑦(𝑛)(𝑥) = 𝐻( 𝑦(𝑛−1)(𝑥),  𝑦(𝑛−2)(𝑥),….  𝑦(1)(𝑥),  𝑦(0)(𝑥)) to facilitate Step#1 . 

 

Recapped below is the procedure of Point-by-Point Method.  

 

Point-by-Point Method to Resolve  

𝑓(𝑛)(𝑥) = 𝐻(𝑓(𝑛−1)(𝑥), 𝑓(𝑛−2)(𝑥), … , 𝑓1(𝑥), 𝑓(𝑥), 𝑔(𝑥)) 
 

Known in priori: 𝑦(0)(𝑥0), 𝑦(1)(𝑥0), 𝑦(2)(𝑥0), ⋯ , 𝑦(𝑛−1)(𝑥0)  

 

Step#1:  Get 𝑦(𝑛)(𝑥0)   by  𝑦(𝑛)(𝑥0) = 𝐻(𝑦(0)(𝑥0), 𝑦(1)(𝑥0), 𝑦(2)(𝑥0), ⋯ , 𝑦(𝑛−1)(𝑥0)) 

 
 

Step#2 Get             𝑦(0)(𝑥0 + ℎ) = 𝑦(0)(𝑥0) + 𝑦(1)(𝑥0) × ℎ 

                                   𝑦(1)(𝑥0 + ℎ) = 𝑦(1)(𝑥0) + 𝑦(2)(𝑥0) × ℎ 
                                   𝑦(2)(𝑥0 + ℎ) = 𝑦(2)(𝑥0) + 𝑦(3)(𝑥0) × ℎ 
                                   ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
                                   𝑦(𝑛−2)(𝑥0 + ℎ) = 𝑦(𝑛−2)(𝑥0) + 𝑦(𝑛−1)(𝑥0) × ℎ 
                                   𝑦(𝑛−1)(𝑥0 + ℎ) = 𝑦(𝑛−1)(𝑥0) + 𝑦(𝑛)(𝑥0) × ℎ 



 
 

Step#3:  Until we are satisfied with the range swept by 𝑥0 , assign 𝑥0 with new value (𝑥0 +

ℎ). Go to Step#2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Worked Examples (A): Skydiving Equation 
 

With parameters: 𝑔 = 10𝑚𝑠−2, 𝐶 = 0.7, 𝜌 = 1.21𝐾𝑔𝑚−3, 𝐴 = 0.18𝑚−2,
𝑖𝑛𝑡𝑖𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑆(0) = 5000 𝑚 𝑎𝑛𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 = 0 𝑚𝑠−1for 

𝑑2𝑆(𝑡)

𝑑𝑡2
= −𝑔 +

1

2𝑚
𝐶𝜌𝐴 [

𝑑𝑆(𝑡)

𝑑𝑡
]

2

 

 

We get 𝑎 = −
1

2𝑚
𝐶𝜌𝐴 = −0.0010164, 𝑏 = 10, 𝑦(0) = 5000, 𝑦′(0) = 0 for 

𝑦′′(𝑥) + 𝑎 ∙ [𝑦′(𝑥)]2 + 𝑏 = 0 

 

(A-1) Point-by-Point Method 

 

Python code to implement Point-by-Point Method goes as below  

 

y0d[0] = 5000 

y1d[0] = 0 

for n in range(len(t)-1): 

    y0d[n+1] = y0d[n] + y1d[n] * dt 

    y1d[n+1] = y1d[n] + y2d[n] * dt 

    y2d[n+1] = -a*y1d[n+1]*y1d[n+1]-b 

 

(A-2) Power Series Method 

 

Python code to get Power series Method executed below  

(A-2-1) To get the 𝐶𝑛 of Power Series calculated first (up to order =10) 

 

c[0] = 5000 

c[1] = 0 

c[2] = 1/2*(-a*c[1]**2-b) 

order = 10 

n = 3 

while n <= order: 

    index = 1 

    sum = 0 

    while index < n: 

        c[n] += -a*(index*(n-index)*c[index]*c[n-index])/((n-1)*n) 

        index += 1 

    n+=1 

(A-2-2) Then carry out Maclaurin series with those coefficients  

y=0 

for index in range(11):     

    y += c[index]*x**index 

  

Result comparison with the region in dashed line zoomed in: 

 



  
Notice that  

(i) As x increases, the waveforms of Maclurin series diverge. 

(ii) As order n increases, the traces get closer to the Point-by-Point one. It indicates the Point-

by-Point Method is the one of the least error.  

 

 

 

 

 

 

 

Worked Examples (B): Pendulum Equation 
 

With 𝐿 = 1𝑚, 𝑔 = 10𝑚𝑠−2𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑛𝑔𝑙𝑒 = 𝜋/3, for  

[
𝑑𝜃(𝑡)

𝑑𝑡
]2 =

2𝑔

𝐿
[𝑐𝑜𝑠𝜃(𝑡) − 𝑐𝑜𝑠𝛼] 

 

We have 𝑎 = −
2𝑔

𝐿
= −20, 𝑏 =  

2𝑔

𝐿
∙ 𝑐𝑜𝑠𝛼 = 10  𝑎𝑛𝑑 𝑦(0) = 𝜋/3 for 

[𝑦′(𝑥)]2 + 𝑎 ∙ cos(𝑦(𝑥)) + 𝑏 = 0 

 

(B-1) Point-by-Point Method  

With  

𝑦′(𝑥) = ±√−𝑎 ∙ cos(𝑦(𝑥)) − 𝑏 

, the python code to implement Point-by-Point Method goes as below 

(Due to the intrinsic ambiguity on +/-, it calls for some judgement loop) 

initialAngle = np.pi/3 

a=-2*g/L 

b=2*g/L*np.cos(initialAngle) 

y0d[0] = initialAngle - 1e-10 

y1d[0] = 0 

clockwise = 1 

for n in range(len(x)-1): 



    y0d[n+1] = y0d[n] + y1d[n] * dt 

     # If it were not to handle uncertainty of +/-, it would just be neatly 

     # y1d[n+1] = -np.sqrt(np.abs(-a * np.cos(y0d[n + 1]) - b)) 

     # without the following codes     

    if clockwise == 1: 

        if y0d[n+1] > -initialAngle: 

            y1d[n+1] = -np.sqrt(np.abs(-a * np.cos(y0d[n + 1]) - b)) 

        else: 

            clockwise = -1 

            y1d[n+1] = np.sqrt(np.abs(-a * np.cos(y0d[n + 1]) - b)) 

    else: 

        if y0d[n+1] < initialAngle: 

            y1d[n+1] = np.sqrt(np.abs(-a * np.cos(y0d[n + 1]) - b)) 

        else: 

            clockwise = 1 

            y1d[n+1] = -np.sqrt(np.abs(-a * np.cos(y0d[n + 1]) - b)) 

 

 

Result of Point-by-Point Method: 

 
 

The period 2.132300 seconds matches what is got from the paper from University of Connecticut 

(ref.3) 

 

(B-2) Deep Differentiation Method  

I substitute 𝑦(0) =
𝜋

3
  in those 𝑦(𝑛)(0)  formula for Pendulum equation to get their numerical 

values 

 

𝑦(0) =
𝜋

3
 

𝑦(1)(0) = ±√−𝑎 ∙ cos(𝑦(0)) − 𝑏 =± √−(−20) ∙ cos (
𝜋

3
) − 10 = 0 

𝑦(2)(0) =
𝑎

2
∙ sin(𝑦(0)) =

−20

2
∙ sin (

𝜋

3
) =  −5√3 

𝑦(3)(0) =
𝑎

2
∙ cos(𝑦(0)) 𝑦(1)(0) =

−20

2
∙ cos (

𝜋

3
) 𝑦(1)(0) = 0 



𝑦(4)(0) = −
𝑎

2
∙ sin(𝑦(0))[ 𝑦(1)(0)]2 +

𝑎

2
∙ cos(𝑦(0)) 𝑦(2)(0)𝑦(4)(0) 

               = −
−20

2
∙ sin (

𝜋

3
) [ 𝑦(1)(0)]2 +

−20

2
∙ cos (

𝜋

3
) 𝑦(2)(0) = 25√3 

 

Then here come the Maclaurin Series: 

 

2-order 

𝑦(𝑥) = 𝑦(0) +
𝑦(1)(0)

1!
𝑥 +

𝑦(2)(0)

2!
𝑥2 =

𝜋

3
+

−5√3

2
𝑥2 

 

4-order 

𝑦(𝑥) = 𝑦(0) +
𝑦(1)(0)

1!
𝑥 +

𝑦(2)(0)

2!
𝑥2 +

𝑦(3)(0)

3!
𝑥3 +

𝑦(4)(0)

4!
𝑥4 =

𝜋

3
+

−5√3

2
𝑥2 +

25√3

24
𝑥4 

 

Result comparison with region in dashed line zoomed: 

 
Notice that  

(i) As x increases, the waveforms of Maclurin series diverge badly. The solutions in 

Maclaurin series, up to order 4, don’t even show the periodicity of a pendulum. 

(ii) As order n increases, the traces get closer to the Point-by-Point one. It indicates the 

coefficients got from Deep Differentiation should truly work for Maclaurin Series.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Summary: 

 
                The actual solution in closed form is difficult to get even for ordinary differential 

equations in engineering. Pursuing the solution in Maclaurin series seems to provide an 

alternative, in theory. However, infinite series is impossible to carried out in reality while the 

error due to truncated terms diverge significantly.  

                I have developed an iterative way, Point-by-Point Method, to numerically work out the 

solution for any n-order differential equation in form of  

 𝑦(𝑛)(𝑥) = 𝐻( 𝑦(𝑛−1)(𝑥),  𝑦(𝑛−2)(𝑥),….  𝑦(1)(𝑥),  𝑦(0)(𝑥)). 

Without either categorizing equation types and orders or calculating special coefficients, it is 

simple and straightforward. It turns out accurate without truncation errors. 

Working through the research with valuable advices from my teacher and successfully 

developing an efficient algorithm in this internal assessment, I have expanded my scope a lot and 

become intrepid, equipped with popular calculation machines nowadays, in handling all kinds of 

differential equations in the future. 
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