

Simulation of

Single and Double-Slit Diffraction Gratings

 I used to believe light passing through a hole form the shape of uniform

intensity. Not till the study of single/double-slit experiment, did I realize that the light

passing through slit(s) generate concentric rings.

 Most textbooks derive the formula in similar ways below.

 Because it has unreasonable assumption to assume parallel for the two long

sides of a triangle, I am not really convinced of the result derived that way. I know it

is just to provide intuitive understanding to prevent form complicated mathematics. I

decide to convince myself through different methodology.

I would like to adopt the fundamental equation describing travelling wave

𝑦 = Asin(𝑘𝑥 − 𝜔𝑡) , 𝑘 =
2𝜋

𝜆
, 𝜔 = 2𝜋𝑓 to conduct the superposition.

At a fixed position, the oscillating displacement will be

𝑦 = ∑
𝐴

4𝜋𝐿𝑖
2 sin(𝑘𝐿𝑖 − 𝜔𝑡)∞

𝑖=1 , where 𝐿𝑖 is the distance from x to source [i],

provided all the source have the same amplitude and zero phase offset.

Then I pick the amplitude as the maximum among y values at different time, t,

in a period. Then plot intensity (= amplitude square) vs angle goes as below.

I share my source code in python as below.

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.image as mpimg # mpimg for image-reading

print("\n\n\n Welcome to Troy's program simulating the intensity of multiple slits which

have non-negligible width. ")

try:

 travellingWaveFormula = mpimg.imread(

 'travelling wave.png') # read image file in the same directory. YCIS is an np.array now

 plt.imshow(travellingWaveFormula) # to display image

 plt.axis('off') # not to show coordinates

 plt.show()

except:

 print(

 "\n\n\n************If you put the 'travelling wave.png' file in the same directory of

this code, you can see the fundamental formula this program refers to.********")

ratioDd=100

D = 1.3 # The radius of circle where light is projected onto (the "D" in IB Physics formula)

d = 150e-6 # the spacing of slits (the "d" in IB Physics formula)

Width = 50e-6 # the width of slit (the "b" in IB formula)

lamda = 600e-9 # wavelength 500nm for blue and 750nm for red

freq = 3e8 / lamda # the frequency of light, equal to c/ wavelength

k = 2 * np.pi / lamda # for the k, =2pi/wavelength, in wave formula: sin(kx-wt)

w = 2 * np.pi * freq # for the w, =2pi*freq, in wave formula: sin(kx-wt)

print("Parameters about slits: they are spaced %3.2f um with slit width=%3.2f um"%(d/1e-

6,Width/1e-6))

print("\n\nSimulation ongoing . Please wait. Thanks for your patience....")

THETA = np.linspace(-1.0, 1.0, 2000) # the angle away from the vertical bisector of two slits

theta = (THETA + 90) / 180 * np.pi # convert THETA to the angle from x-axis amd make it radian

intensityAtTHETA = theta * 0 # light intensity at each angle

lightSource1 = np.linspace(-d / 2 - Width / 2, -d / 2 + Width / 2, 10) # the point sources

distributed over slit#1

lightSource2 = np.linspace(d / 2 - Width / 2, d / 2 + Width / 2, 10) # the point sources

distributed over slit#2

lightSource3 = np.linspace(-d - d / 2 - Width / 2, -d - d / 2 + Width / 2,

 10) # the point sources distributed over slit#3

lightSource4 = np.linspace(d + d / 2 - Width / 2, d + d / 2 + Width / 2,

 10) ## the point sources distributed over slit#4

lightSource = np.append(lightSource1, lightSource2) # overall point sources over slit#1 and

slit#2

halfCycle = np.linspace(0, 1 / 2, 60) * 1 / freq # We will check out half a cycle to decide the

amplitude

m = 0

while m < len(theta):

 angle = theta[m]

 amplitude = 0

 xPos = D * np.cos(angle) # the x coordinate for a position on the circle of radiud D

 yPos = D * np.sin(angle) # the y coordinate for a position on the circle of radiud D

 n = 0

 while n < len(halfCycle):

 t = halfCycle[n] # one instant when we are to sum up individual displacements by all

the point sources

 waveSum = 0 # initilization for displacement summation

 p = 0

 while p < len(

 lightSource): # We are to sum up (accumulate) all the discplacement from

different point sources, one by one,

 LS = lightSource[p] # a point source

 disAway = np.sqrt(

 pow((xPos - LS), 2) + pow(yPos, 2)) # distance away from the source. It is

the "x" in sin(kx-wt)

 waveSum = waveSum + np.sin(k * disAway - w * t) # displacement

accumulation using general formula for waves

 p += 1

 if abs(waveSum) > amplitude: # Find the maximum and make it the amplitude

 amplitude = abs(waveSum)

 n += 1

 intensityAtTHETA[m] = pow(amplitude, 2) # wave intensity =amplitude*amplitude

 m += 1

plt.subplot(121)

plt.plot(THETA, intensityAtTHETA) # plot intensity over angle

#plt.plot(THETA, 20*np.log10(intensityAtTHETA)) # plot intensity over angle

plt.title("Intensity (Blue: 2 slits. Red: 4 slits. Slits equally spaced)")

plt.xlabel("angle in degree")

plt.subplot(122)

plt.plot(intensityAtTHETA*np.cos(theta), intensityAtTHETA*np.sin(theta)) # plot intensity over

angle

plt.title("Intensity (Blue: 2 slits. Red: 4 slits. Slits equally spaced)")

#plt.xlabel("angle in degree")

We are to check out the influence when slits number are increased . We add two more slits

below.

Only the lightSource is expanded. ALl the rest code are re-used without modification.

lightSource = np.append(lightSource, lightSource3)

lightSource = np.append(lightSource, lightSource4) # overall point sources over slit#1, slit#2,

sit#3 and slit#4 (add two slits)

halfCycle = np.linspace(0, 1 / 2, 60) * 1 / freq # We will check out half a cycle to decide the

amplitude

m = 0

while m < len(theta):

 angle = theta[m]

 amplitude = 0

 xPos = D * np.cos(angle) # the x coordinate for a position on the circle of radiud D

 yPos = D * np.sin(angle) # the y coordinate for a position on the circle of radiud D

 n = 0

 while n < len(halfCycle):

 t = halfCycle[n] # one instant when we are to sum up individual displacements by all

the point sources

 waveSum = 0 # initilization for displacement summation

 p = 0

 while p < len(

 lightSource): # We are to sum up (accumulate) all the discplacement from

different point sources, one by one,

 LS = lightSource[p] # a point source

 disAway = np.sqrt(

 pow((xPos - LS), 2) + pow(yPos, 2)) # distance away from the source. It is

the "x" in sin(kx-wt)

 waveSum = waveSum + np.sin(k * disAway - w * t) # displacement

accumulation using general formula for waves

 p += 1

 if abs(waveSum) > amplitude: # Find the maximum and make it the amplitude

 amplitude = abs(waveSum)

 n += 1

 intensityAtTHETA[m] = pow(amplitude, 2) # wave intensity =amplitude*amplitude

 m += 1

plt.subplot(121)

plt.plot(THETA, intensityAtTHETA, 'r') # plot intensity over angle

#plt.plot(THETA, 20*np.log10(intensityAtTHETA), 'r') # plot intensity over angle

plt.subplot(122)

plt.plot(intensityAtTHETA*np.cos(theta), intensityAtTHETA*np.sin(theta),'r') # plot intensity

over angle

#plt.axis([-800, 800, 0, 1600])

plt.show()

