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Motivation and Research 
 
Motivation 
 

Skydiving is beautiful, heart-racing, and exhilarating on film. I particularly admire 
freefall cameramen’s skill to control the diving speed under gravitational acceleration and still 
shoot good movies. It is intriguing to find IB examiners hope students to learn more about the 
speed change of skydiving by putting it as an examination question. (ref.1) 

 
To understand it in depth, I found a good article in College Physics (ref. 2) well 

demystifying how skydivers control their terminal speed by changing their cross sections facing 

ground. However, the nonlinear differential equation, 
ௗమௌ(௧)

ௗ௧మ = −𝑔 +
ଵ

ଶ௠
𝐶𝜌𝐴 ቀ

ௗௌ(௧)

ௗ௧
ቁ

ଶ

   (where S: 

height g: gravitational acceleration C: drag coefficient A: cross section facing ground 𝜌 air 
density), is really intimating. I looked up college calculus but failed to find the resolution.  

 
As I tried to build a pendulum of true isochronism for my Physics IA, I derived, based on 

energy conservation, the differential equation describing the time function of swing 

angle, 𝜃(𝑡) , for a pendulum. It is 
ௗఏ(௧)

ௗ௧
= ±ට

ଶ௚

௅
[𝑐𝑜𝑠𝜃(𝑡) − 𝑐𝑜𝑠𝛼). 

  
 It looks like a neat 1st order differential equation, much simpler than the 2nd order 

one of skydiving dynamics. However, it seems none of resolutions I have learned from Math 
HL is applicable to get this resolved. A paper from University of Connecticut (ref.3) 
suggests it be resolved by "Elliptic Integral of the First Kind". 

 
To get rid of the trauma that even ordinary engineering questions can be only 

handled by mathematicians, I need to work a way to depict what the solutions of those 
differential equations look like.   

 
 

Research 
(i) Solution for 1st differential equation 

I have learned from IB math high level several skills and procedures to find the solutions 
for some 1-order differential equations that can be written in the forms below. (ref. 3) 

 

Type 1. 
ௗ௬

ௗ௫
= 𝑔(𝑥)    (e.g. 

ௗ௬

ௗ௫
= 𝑒ଶ௫) 

Type 2. 
ௗ௬

ௗ௫
=

௚(௫)

௛(௬)
  (called separable) (e.g. 

ௗ௬

ௗ௫
=

௫

௬మ) 



 

Type 3. 
ௗ௬

ௗ௫
= 𝑔(

௬

௫
)  (called homogeneous) (e.g. 

ௗ௬

ௗ௫
=

௫

௬
− 1) 

Type 4. 
ௗ௬

ௗ௫
+ 𝑃(𝑥)𝑦 = 𝑄(𝑥)  (e.g. 

ௗ௬

ௗ௫
+ 3𝑥ଶ𝑦 = 6𝑥ଶ) 

 
It is easy to get lost in those type-orientated approaches even though the solutions are only 

for a portion of 1st order differential equations. Besides, falling in one of the 4 types does not 

guarantee a solution could be got in a closed form. The pendulum equation   ௗఏ(௧)

ௗ௧
=

±ට
ଶ௚

௅
[𝑐𝑜𝑠𝜃(𝑡) − 𝑐𝑜𝑠𝛼) falls in Type 1 but to find the function,  ∫ ට

ଶ௚

௅
[𝑐𝑜𝑠𝜃(𝑡) − 𝑐𝑜𝑠𝛼)𝑑𝑡  ,is 

extremely difficult.  
 

(ii) Solution for 2nd  differential equation 
 
I turn to Thomas’ Calculus (ref. 4) for resolution of 2nd order differential equations. It’s 

instructed how to solve 2nd order differential equation that can be written in the following forms:  
1. Linear nonhomogeneous differential equation with constant coefficient of  

𝑑ଶ𝑦(𝑥)

𝑑𝑥ଶ
,
𝑑𝑦(𝑥)

𝑑𝑥
, 𝑦(𝑥) 

𝑎
𝑑ଶ𝑦(𝑥)

𝑑𝑥ଶ
+ 𝑏

𝑑𝑦(𝑥)

𝑑𝑥
+ 𝑐𝑦(𝑥) = 𝐺(𝑥) 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

2. If the coefficients of 
ௗమ௬(௫)

ௗ௫మ
,

ௗ௬(௫)

ௗ௫
, 𝑦(𝑥) are not constant, then, to be resolvable, it’s 

necessary that they can put in the following format with G(x) = 0. It’s called Euler 
equation.  

𝑎𝑥ଶ
𝑑ଶ𝑦(𝑥)

𝑑𝑥ଶ
+ 𝑏𝑥

𝑑𝑦(𝑥)

𝑑𝑥
+ 𝑐𝑦(𝑥) = 0, 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

 
Obviously, the mechanical equation of skydiving is not among those resolvable ones. It 

seems hard for us to figure out the complete behavior even for an ordinary mechanism of well-
defined differential equation.  

 
(iii) Power Series for linear differential equation 

 
Thomas demonstrated how to get solution in Power Series. Here is an example 
Solve the equation 𝑦(ଶ)(𝑥) + 𝑦(𝑥) = 0 by the power-series method. 
Solution We assume the series solution takes the form of 

𝑦(𝑥) = ෍ 𝐶௡𝑥௡

ஶ

௡ୀ଴

 

and calculate the derivatives 
𝑦′(𝑥) = ∑ 𝑛𝐶௡𝑥௡ିଵஶ

௡ୀଵ     and  𝑦(𝑥) = ∑ 𝑛(𝑛 − 1)𝐶௡𝑥௡ିଶஶ
௡ୀଶ  

  
Substitution of these forms into the second-order equation gives us 
∑ 𝑛(𝑛 − 1)𝐶௡𝑥௡ିଶஶ

௡ୀଶ + ∑ 𝐶௡𝑥௡ஶ
௡ୀ଴ =0 

 



 

We learn  𝐶௡ = −
ଵ

௡(௡ିଵ)
𝐶௡ିଶ, 𝐶ଶ = −

ଵ

ଶ∙ଵ
𝐶଴,𝐶ଷ = −

ଵ

ଷ∙ଶ
𝐶ଵ 

 
Finally, it yields 

 𝑦(𝑥) = 𝐶଴ ∑
(ିଵ)ೖ

(ଶ௞)!
𝑥ଶ௞ஶ

௞ୀ଴ + 𝐶ଵ ∑
(ିଵ)ೖ

(ଶ௞ାଵ)!
𝑥ଶ௞ାଵஶ

௞ୀ଴  

 
Thomas reminds that they happen to be Maclaurin Series for cosine and sine function. 
 𝑦(𝑥) = 𝐶଴𝑐𝑜𝑠𝑥 + 𝐶ଵ𝑠𝑖𝑛𝑥 
 
It seemed “OK” before I went to the example next. 
Assume the solution of 𝑦ᇱᇱ(𝑥) + 𝑥𝑦ᇱ(𝑥) + 𝑦(𝑥) = 0 to be  

𝑦(𝑥) = ෍ 𝐶௡𝑥௡

ஶ

௡ୀ଴

 

 

෍ 𝑛(𝑛 − 1)𝐶௡𝑥௡ିଶ
ஶ

௡ୀଶ
+ 𝑥 ෍ 𝑛𝐶௡𝑥௡ିଵ

ஶ

௡ୀଵ
+ ෍ 𝑥௡ = 0

ஶ

௡ୀ଴
 

We learn  𝐶௡ାଶ = −
ଵ

௡ାଶ
𝐶௡, 𝐶ଶ = −

ଵ

ଶ
𝐶଴, 𝐶ଷ = −

ଵ

ଷ
𝐶ଵ 

Finally, it yields 

 𝑦(𝑥) = 𝐶଴ ∑
(ିଵ)ೖ

(ଶ)(ସ)⋯(ଶ௞)
𝑥ଶ௞ஶ

௞ୀ଴ + 𝐶ଵ ∑
(ିଵ)ೖ

(ଷ)(ହ)⋯(ଶ௞ାଵ)
𝑥ଶ௞ାଵஶ

௞ୀ଴  

This time Thomas just left as it is because there is no close form function could be 
mapped.  

Frankly I do not know how I can make use of infinite series even told it is the solution. 
 
Trying to follow the procedure, I learned the powers-series method does not fit nonlineart 

differential equation. 
 
Let us find Power Series Solution for skydiving equation 𝑦′ᇱ(𝑥) = −𝑔 + 𝑎[𝑦′(𝑥)]ଶ 

𝑦(𝑥) = ෍ 𝐶௡𝑥௡

ஶ

௡ୀ଴

 

 

෍ 𝑛(𝑛 − 1)𝐶௡𝑥௡ିଶ

ஶ

௡ୀଶ

= −𝑔 + (෍ 𝐶௡𝑥௡

ஶ

௡ୀ଴

)ଶ 

 
It seems hopeless for me to resolve 𝐶௡ due to the multiplication of two infinite series, 

(∑ 𝐶௡𝑥௡ஶ
௡ୀ଴ )ଶ. I decide to revisit this later. 

 
 
After trying so many methods in vain, I consider scrutinizing the fundamental definition 

might be inspiring. 
𝑑𝑦

𝑑𝑥
= lim

௛→଴

𝑦(𝑥 + ℎ) − 𝑦(𝑥)

(𝑥 + ℎ) − 𝑥
 

 



 

A derive is to tell a function how rapidly it changes around some point. And a differential 
equation is to tell us how a point is coupled, through derivative of a function y(x), to the 
other points in its neighborhood.  All we are reminded of is not to neglect the neighbors. 
We are probably able to follow the bread scum left by a differential equation to find the 
function values of the other points in the neighborhood.  

 
Let us check out the 1st order equation, type 4, 

ௗ௬

ௗ௫
+ 𝑃(𝑥)𝑦 = 𝑄(𝑥)      

             →
𝑦(𝑥଴ + ℎ) − 𝑦(𝑥଴)

ℎ
+ 𝑃(𝑥଴)𝑦(𝑥଴) = 𝑄(𝑥଴),     𝑤ℎ𝑒𝑟𝑒 ℎ → 0 

            → 𝑦(𝑥଴ + ℎ) = ℎ ∙ [
1

ℎ
𝑦(𝑥଴) + 𝑄(𝑥଴) − 𝑃(𝑥଴)𝑦(𝑥଴)] ∙ ,   𝑤ℎ𝑒𝑟𝑒 ℎ → 0 

It shows that we can easily get 𝑦(𝑥଴ + ℎ) once given 𝑦(𝑥଴)  ,since 𝑄(𝑥଴)  and 𝑃(𝑥଴) are 
known function values. (Please be reminded that Q(x) and P(x) are given function. We can get 
any Q(𝑥௜) and P(𝑥௜) by letting 𝑥 = 𝑥௜in the functions) ). Likewise, we can easily get 𝑦(𝑥଴ + 2ℎ) 
once knowing 𝑦(𝑥଴ + ℎ)  since 𝑄(𝑥଴ + ℎ)  and 𝑃(𝑥଴ + ℎ) are known values. Iteratively, we can 
find the function values for all 𝑥 in domain, starting from one known point, 𝑥଴. 

 
How about 2nd differential equation? 

𝑎
𝑑ଶ𝑦(𝑥)

𝑑𝑥ଶ
+ 𝑏

𝑑𝑦(𝑥)

𝑑𝑥
+ 𝑐𝑦(𝑥) = 𝐺(𝑥) 

→ 𝑎
𝑦ᇱ(𝑥଴ + ℎ) − 𝑦ᇱ(𝑥଴)

ℎ
+ 𝑏

𝑦(𝑥଴ + ℎ) − 𝑦(𝑥଴)

ℎ
+ 𝑐𝑦(𝑥଴) = 𝐺(𝑥଴) 

→ 𝑎

𝑦(𝑥଴ + 2ℎ) − 𝑦(𝑥଴ + ℎ)
ℎ

− 𝑏
𝑦(𝑥଴ + ℎ) − 𝑦(𝑥଴)

ℎ
ℎ

+ 𝑏
𝑦(𝑥଴ + ℎ) − 𝑦(𝑥଴)

ℎ
+ 𝑐𝑦(𝑥଴) = 𝐺(𝑥଴) 

→
𝑎

ℎଶ
∙ 𝑦(𝑥଴ + 2ℎ) = 𝐺(𝑥଴) + ൬

𝑎

ℎଶ
−

𝑏

ℎ
൰ ∙ 𝑦(𝑥଴ + ℎ) + ൬−

𝑎

ℎଶ
+

𝑏

ℎ
− 𝑐൰ ∙ 𝑦(𝑥଴) 

𝑦(𝑥଴ + ℎ) =
ℎଶ

𝑎
൤𝐺(𝑥଴) + ൬

𝑎

ℎଶ
−

𝑏

ℎ
൰ ∙ 𝑦(𝑥଴ + ℎ) + ൬−

𝑎

ℎଶ
+

𝑏

ℎ
− 𝑐൰ ∙ 𝑦(𝑥଴)൨ 

 
It shows that we can easily get 𝑦(𝑥଴ + 𝑛ℎ) if given 𝑦(𝑥଴) and 𝑦(𝑥଴ + ℎ), since 𝐺(𝑥଴) is a 

known value. (Please be reminded that G(x) is given function.) Likewise, we can easily get 
𝑦(𝑥଴ + 3ℎ) once knowing 𝑦(𝑥଴ + ℎ) and 𝑦(𝑥଴ + 2ℎ) since 𝐺(𝑥଴ + ℎ) is a known value. 
Iteratively, we can find the function values for all x in domain, starting from one known value 
close points, 𝑥଴ 𝑎𝑛𝑑 𝑥଴ + ℎ. 

 
The process above to find 𝑦(𝑥଴ + 𝑛ℎ) meeting an n-order differential equation based on 

known 𝑦(𝑥଴), 𝑦(𝑥଴ + ℎ), … 𝑦(𝑥଴ + ℎ), … , 𝑦(𝑥଴ + (𝑛 − 1)ℎ) looks promising. However, the 
coefficient derivation is tedious and will become more grueling in handling high-order 
differential equations of more comprehensive forms where the coefficients are not just constants 
but functions. It is difficult to directly apply the method for the previous two equations. 

 
In this internal assessment, I will explore and examine this idea, develop it into a simple 

algorithm and make it applicable for various high-order differential equations, to hopefully 
resolve the skydiving and pendulum equations in the long run.  



 

 

Proof Of Concepts 
                      
Given a general differential equation 
 𝑦(௡)(𝑥) = 𝐹(𝑦(𝑥), 𝑦(ଵ)(𝑥), 𝑦(ଶ)(𝑥), ⋯ , 𝑦(௡ିଵ)(𝑥))  
together with the initial values 
 𝑦(𝑥଴), 𝑦(𝑥଴ + ℎ), 𝑦(𝑥଴ + 2ℎ), ⋯ , 𝑦(𝑥଴ + (𝑛 − 1)ℎ),    where ℎ → 0 
 
could we acquire 𝑦(𝑥଴ + 𝑛ℎ) accordingly?  
 
 

As we can see from research, direct substitution is a promising way to prove that we 
can get 𝑦(𝑥଴ + ℎ) from 𝑦(𝑥଴) for “some” 1st differential equations and 𝑦(𝑥଴ + 2ℎ) from 𝑦(𝑥଴) 
and y(𝑥଴ + ℎ) for “some” 2nd differential ones. However, we have observed the coefficient 
acquisition is getting harder as differential order increases. Besides, the types of those 
differential equation are likely extremely limited once the differential coefficients are not 
constants. We are thus prompted to figure out a way other than direct substitution to prove this 
primitive idea. 

I will separate the proof into two section. 
Section 1: I will prove y(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴) can be acquired from 
𝑦(𝑥଴), 𝑦(𝑥଴ + ℎ), 𝑦(𝑥଴ + 2ℎ), ⋯ , 𝑦(𝑥଴ + (𝑛 − 1)ℎ), 
 
Section2: I will prove 𝑦(𝑥଴ + 𝑛ℎ), 𝑦(ଵ)(𝑥଴ + 𝑛ℎ), 𝑦(ଶ)(𝑥଴ + 𝑛ℎ), ⋯ , 𝑦(௡ିଵ)(𝑥଴ + 𝑛ℎ) can be 
acquired from 𝑦(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴).  

Once finishing Section1 and Section2, it will complete the proof that 𝑦(𝑥଴ + 𝑛ℎ) can 
be acquired from known 𝑦(𝑥଴), 𝑦(𝑥଴ + ℎ), 𝑦(𝑥଴ + 2ℎ), ⋯ , 𝑦(𝑥଴ + (𝑛 − 1)ℎ) 
 
Section 1: 
Prove 𝑦(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴) could be acquired from 𝑦(𝑥଴), 𝑦(𝑥଴ + ℎ), 𝑦(𝑥଴ +
2ℎ), ⋯ , 𝑦(𝑥଴ + (𝑛 − 1)ℎ), 
 
Proof: 

By definition 𝑦(௡)(𝑥଴) =
௬(೙షభ)(௫బା௛)ି௬(೙షభ)(௫బ)

௛
 

We can learn 
𝑦(ଵ)(𝑥଴)  𝑏𝑦 

𝑦(0)൫𝑥0+ℎ൯−𝑦(0)൫𝑥0൯

ℎ
  ,  

𝑦(ଵ)(𝑥଴ + ℎ) 𝑏𝑦  
𝑦(଴)(𝑥଴ + 2ℎ) − 𝑦(଴)(𝑥଴ + ℎ)

ℎ
  

……..,  

𝑦(ଵ)(𝑥଴ + (𝑛 − 2)ℎ)  𝑏𝑦 
𝑦(0)൫𝑥0+(𝑛−1)ℎ൯−𝑦(0)൫𝑥0+(𝑛−2)ℎ൯

ℎ
  ,  

 
With 𝑦(ଵ)(𝑥଴), 𝑦(ଵ)(𝑥଴ + ℎ), ⋯ , 𝑦(ଵ)(𝑥଴ + (𝑛 − 2)ℎ)  learned,  we can proceed to get 

𝑦(ଶ)(𝑥଴)  𝑏𝑦 
𝑦൫𝑥0+ℎ൯−𝑦(1)൫𝑥0൯

ℎ
  ,  



 

𝑦(ଶ)(𝑥଴ + ℎ) 𝑏𝑦  
𝑦(ଵ)(𝑥଴ + 2ℎ) − 𝑦(ଵ)(𝑥଴ + ℎ)

ℎ
  

……..,  

𝑦(ଶ)(𝑥଴ + (𝑛 − 3)ℎ)  𝑏𝑦 
𝑦(1)൫𝑥0+(𝑛−2)ℎ൯−𝑦(1)൫𝑥0+(𝑛−3)ℎ൯

ℎ
  ,  

……. 
Repeat the process  
With 𝑦(௡ିଷ)(𝑥଴), 𝑦(௡ିଷ)(𝑥଴ + ℎ), 𝑦(௡ିଷ)(𝑥଴ + 2ℎ)  learned,  we can proceed to get 
𝑦(௡ିଶ)(𝑥଴)  𝑏𝑦 

𝑦(𝑛−3)൫𝑥0+ℎ൯−𝑦(𝑛−3)൫𝑥0൯

ℎ
  ,  

𝑦(௡ିଶ)(𝑥଴ + ℎ) 𝑏𝑦  
𝑦(௡ିଷ)(𝑥଴ + 2ℎ) − 𝑦(௡ିଷ)(𝑥଴ + ℎ)

ℎ
  

 
With 𝑦(௡ିଶ)(𝑥଴), 𝑦(௡ିଶ)(𝑥଴ + ℎ)  learned, we can proceed to get 
𝑦(௡ିଵ)(𝑥଴)  𝑏𝑦 

𝑦(𝑛−2)൫𝑥0+ℎ൯−𝑦(𝑛−2)൫𝑥0൯

ℎ
  ,  

 
A figure probably makes it easier to understand. 

 
It is proved that 𝑦(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴) , the first column shaded in yellow, are 
acquired from known 𝑦(𝑥଴), 𝑦(𝑥଴ + ℎ), 𝑦(𝑥଴ + 2ℎ), ⋯ , 𝑦(𝑥଴ + (𝑛 − 1)ℎ),  which is the first row 
shaded in grey. 
 
Section2:  
Prove that 𝑦(𝑥଴ + 𝑛ℎ), 𝑦(ଵ)(𝑥଴ + 𝑛ℎ), 𝑦(ଶ)(𝑥଴ + 𝑛ℎ), ⋯ , 𝑦(௡ିଵ)(𝑥଴ + 𝑛ℎ) can be acquired from 
𝑦(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴).  
Proof: 
It’s given that 𝑦(௡)(𝑥) = 𝐹(𝑦(𝑥), 𝑦(ଵ)(𝑥), 𝑦(ଶ)(𝑥), ⋯ , 𝑦(௡ିଵ)(𝑥))  for all x in domain 
Since we have learned 𝑦(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴) , we could directly get 𝑦(௡)(𝑥଴) 
by  
                                𝑦(௡)(𝑥଴) = 𝐹(𝑦(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴)) 
 

By definition 𝑦(௞)(𝑥଴) =
௬(ೖషభ)(௫బା௛)ି௬(ೖషభ)(௫బ)

௛
 

→ 𝑦(௞ିଵ)(𝑥଴ + ℎ) = 𝑦(௞ିଵ)(𝑥଴) + 𝑦(௞)(𝑥଴) × ℎ 
So, we can get  



 

𝑘 = 1: 𝑦(଴)(𝑥଴ + ℎ) = 𝑦(଴)(𝑥଴) + 𝑦(ଵ)(𝑥଴) × ℎ 
𝑘 = 2: 𝑦(ଵ)(𝑥଴ + ℎ) = 𝑦(ଵ)(𝑥଴) + 𝑦(ଶ)(𝑥଴) × ℎ 
𝑘 = 3: 𝑦(ଶ)(𝑥଴ + ℎ) = 𝑦(ଶ)(𝑥଴) + 𝑦(ଷ)(𝑥଴) × ℎ 
 
𝑘 = 𝑛 − 1: 𝑦(௡ିଶ)(𝑥଴ + ℎ) = 𝑦(௡ିଶ)(𝑥଴) + 𝑦(௡ିଵ)(𝑥଴) × ℎ 
𝑘 = 𝑛      ∶ 𝑦(௡ିଵ)(𝑥଴ + ℎ) = 𝑦(௡ିଵ)(𝑥଴) + 𝑦(௡)(𝑥଴) × ℎ 
 
It shows 𝑦(𝑥଴ + ℎ), 𝑦(ଵ)(𝑥଴ + ℎ), 𝑦(ଶ)(𝑥଴ + ℎ), ⋯ , 𝑦(௡ିଵ)(𝑥଴ + ℎ), can be acquired learned 
from 𝑦(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴). Once we have learned 𝑦(𝑥଴ + ℎ), 𝑦(ଵ)(𝑥଴ +

ℎ), 𝑦(ଶ)(𝑥଴ + ℎ), ⋯ , 𝑦(௡ିଵ)(𝑥଴ + ℎ), we can proceed to get 𝑦(𝑥଴ + 2ℎ), 𝑦(ଵ)(𝑥଴ +

2ℎ), 𝑦(ଶ)(𝑥଴ + 2ℎ), ⋯ , 𝑦(௡ିଵ)(𝑥଴ + 2ℎ). With the domino effect which mathematical induction 
is based on, it is inferred that we can iterate this process to get 𝑦(𝑥଴ + 𝑛ℎ),  𝑦(ଵ)(𝑥଴ +

𝑛ℎ), 𝑦(ଶ)(𝑥଴ + 𝑛ℎ), ⋯ , 𝑦(௡ିଵ)(𝑥଴ + 𝑛ℎ) in the long run and even go beyond. 
 
Again, a figure probably makes it easier to understand. 

 
With section 1 and 2,  
We have proved that we can always get the value next, 𝑦(𝑥଴ + 𝑛ℎ), with last n values 
𝑦(𝑥଴), 𝑦(𝑥଴ + ℎ), 𝑦(𝑥଴ + 2ℎ), ⋯ , 𝑦(𝑥଴ + (𝑛 − 1)ℎ), 𝑤ℎ𝑒𝑟𝑒 ℎ → 0. It also means we can get the 
function values for all x because of domino effect and infinitely small h. 
 
 
 
 
 
 
 
 



 

 
Algorithm Development 
While proving the concept, we have developed a systematic way to get 𝑦(𝑥଴ + 𝑛ℎ), with last n 
values 𝑦(𝑥଴), 𝑦(𝑥଴ + ℎ), 𝑦(𝑥଴ + 2ℎ), ⋯ , 𝑦(𝑥଴ + (𝑛 − 1)ℎ)   
Or equivalently, to get 𝑦(𝑥଴ + ℎ), with last n values 𝑦(𝑥଴), 𝑦(𝑥଴ − ℎ), 𝑦(𝑥଴ − 2ℎ)), ⋯ , 𝑦(𝑥଴ −
(𝑛 − 1)ℎ)   
 
This systematics method goes as: 
 
Step#1 Convert 𝑦(𝑥଴), 𝑦(𝑥଴ − ℎ), 𝑦(𝑥଴ − 2ℎ), ⋯ , 𝑦(𝑥଴(𝑛 − 1))ℎ)  

to 𝑦(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴)  based on the following operation shown below 

  
This is horizontally rotated to the figure we plot in proof section 1. Why? 
Recalling 

  
𝑑𝑦

𝑑𝑥
ฬ

௫ୀ௫బ

= lim
௛→଴

𝑦(𝑥଴ + ℎ) − 𝑦(𝑥଴)

(𝑥଴ + ℎ) − 𝑥଴

= lim
௛→଴

𝑦(𝑥଴) − 𝑦(𝑥଴ − ℎ)

𝑥଴ − (𝑥଴ − ℎ)
 

Applying this for 1st and 2nd order derivatives, we will have 

𝑦(ଵ)(𝑥଴ − (𝑛 − 2)ℎ) =
𝑦(଴)(𝑥଴ − (𝑛 − 2)ℎ) − 𝑦(଴)(𝑥଴ − (𝑛 − 1)ℎ)

ℎ
, ⋯, 

𝑦(ଵ)(𝑥଴ − ℎ) =
𝑦(଴)(𝑥଴ − ℎ) − 𝑦(଴)(𝑥଴ − 2ℎ)

ℎ
, 𝑦 (ଵ)(𝑥଴) =

𝑦(଴)(𝑥଴) − 𝑦(଴)(𝑥଴ − ℎ)

ℎ
 

 

𝑦(ଶ)(𝑥଴ − (𝑛 − 3)ℎ) =
𝑦(ଵ)(𝑥଴ − (𝑛 − 3)ℎ) − 𝑦(ଵ)(𝑥଴ − (𝑛 − 2)ℎ)

ℎ
, ⋯, 

𝑦(ଶ)(𝑥଴ − ℎ) =
𝑦(ଵ)(𝑥଴ − ℎ) − 𝑦(ଵ)(𝑥଴ − 2ℎ)

ℎ
, 𝑦 (ଶ)(𝑥଴) =

𝑦(ଵ)(𝑥଴) − 𝑦(ଵ)(𝑥଴ − ℎ)

ℎ
 

……… 



 

Without finishing the rest higher-order derivatives, we can tell the operation goes in accordance 
of operation shown in figure above.  
 
 
Step#2  Get  𝑦(௡)(𝑥଴) = 𝐺(𝑦(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴)) 

 
Step#3 Get  

                                   𝑦(଴)(𝑥଴ + ℎ) = 𝑦(଴)(𝑥଴) + 𝑦(ଵ)(𝑥଴) × ℎ 
                                   𝑦(ଵ)(𝑥଴ + ℎ) = 𝑦(ଵ)(𝑥଴) + 𝑦(ଶ)(𝑥଴) × ℎ 
                                   𝑦(ଶ)(𝑥଴ + ℎ) = 𝑦(ଶ)(𝑥଴) + 𝑦(ଷ)(𝑥଴) × ℎ 
                                   ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
                                   𝑦(௡ିଶ)(𝑥଴ + ℎ) = 𝑦(௡ିଶ)(𝑥଴) + 𝑦(௡ିଵ)(𝑥଴) × ℎ 
                                   𝑦(௡ିଵ)(𝑥଴ + ℎ) = 𝑦(௡ିଵ)(𝑥଴) + 𝑦(௡)(𝑥଴) × ℎ 

 
Step4:  Until we are satisfied with the range swept by 𝑥଴ , assign 𝑥଴ with new value (𝑥଴ + ℎ). 

Go to Step#2 

 

 

 

 



 

 

 
 
 
 
 
It’s often that 𝑦(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴) are giver as initial conditions, we can save 
step1 and start from step.2 directly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Example 1: (2-order linear differential equation) 

2

1 2
''( ) 2 '( )f x f x

x x
     with initial values (1) 0, '(1) 1, ''(1) 1f f f     

 
(Note: ( ) ln 1f x x   is validated to be the actual solution of this equation. ) 
 
How about the simulation result of the algorithm? 
***python code*** 
import numpy as np 
import matplotlib.pyplot as plt 
x=np.arange(1,10,0.1)  # h=0.1 
lnValue=np.log(x)+1  # the known actual code directly calling for numpy built-in log functions 
# value arrays for f(x), f’(x), f’’(x) 
f_0_of_x=x*0  
f_1_of_x=x*0 
f_2_of_x=x*0 
 
# initial value of f(x),f’(x),f’’(x) at x=1 (corresponding to n=0) 
f_0_of_x[0]=1 
f_1_of_x[0]=1 
f_2_of_x[0]=-1 
h=x[1]-x[0] 
 
#body of iterative algorithm 
n=0 
while n<len(x)-1: 
      f_0_of_x[n+1]=f_1_of_x[n]*h+f_0_of_x[n] 
      f_1_of_x[n+1]=f_2_of_x[n]*h+f_1_of_x[n] 
      f_2_of_x[n+1]=-2*f_1_of_x[n+1]-1/(x[n+1]*x[n+1])+2/x[n+1] 
      n=n+1 
 
# compare the plotting of known actual solution and constructed function by iterative algorith,  
plt.plot(x,f_0_of_x,'b')      
plt.plot(x,lnValue,'*r') 
plt.show()  

           



 

 
 
 
 
 
 
 
 
 
A computational way to get the coefficients of Maclaurin Series. 
 

My computational way to get waveform plot is simple for machines. Though we  have been 
prompted to make good use of calculator, a method without calculate so many point just for one 
target value is probably desired. Because we know it is not practical to expect close-foirm 
solution, I decide to revisit Maclaurin Series solution. 

The Power Series Solution Professor Thomas suggests is intriscially Maclaurin Series. Since 
his approach to derive coefficients for nonlinear differential equation fail me, I decide directly 
work on Maclaurin series directly. 

 

    𝑀𝑎𝑐𝑙𝑎𝑢𝑟𝑖𝑛 𝑆𝑒𝑟𝑖𝑒𝑠:  𝑦(𝑥) = 𝑦(0) +
௬(భ)(଴)

ଵ!
𝑥 +

௬(మ)(଴)

ଶ!
𝑥ଶ +

௬(య)(଴)

ଷ!
𝑥ଷ + ⋯+

௬(೙)(଴)

௡!
𝑥௡ + ⋯     

 
If I could find all the 𝑦(௞)(0), ∀𝑘 ∈ 𝑁, problem will be solved! Could I? 
 

Example: 𝑦(ଶ)(𝑥) = −𝑔 + 𝑎ൣ𝑦(ଵ)(𝑥)൧
ଶ
, given  𝑦(0) = 5000, 𝑦ᇱ(0) = 0ᇱ 

 

𝑦(ଶ)(𝑥) = −𝑔 + 𝑎ൣ𝑦(ଵ)(𝑥)൧
ଶ

⋯ ⋯ (𝐸𝑞. 20) 
 

By substituting, 𝑦(ଶ)(0) = −𝑔 + 𝑎ൣ𝑦(ଵ)(0)൧
ଶ
, we can get   

𝑦(ଶ)(0) = −𝑔 ,  
How about 𝑦(ଷ)(𝑥) ? 
 
Differentiating Eq(20) 
 

𝑦(ଷ)(𝑥) = 2𝑎𝑦(ଵ)(𝑥)𝑦(ଶ)(𝑥) ⋯ ⋯ (𝐸𝑞. 21) 
By substituting, 

𝑦(ଷ)(0) = 2𝑎𝑦(ଵ)(0)𝑦(ଶ)(0) = 0 
 
Differentiating Eq(21) 
 

𝑦(ସ)(𝑥) = 2𝑎𝑦(ଶ)(𝑥)𝑦(ଶ)(𝑥) + 2𝑎𝑦(ଵ)(𝑥)𝑦(ଷ)(𝑥) = 2𝑎[𝑦(ଶ)(𝑥)]ଶ ⋯ ⋯ (𝐸𝑞. 22) 
By substituting, 

𝑦(ସ)(0) = 2𝑎[𝑦(ଶ)(0)]ଶ = 2𝑎𝑔ଶ 
 



 

 
Differentiating Eq(22) 
 

𝑦(ହ)(𝑥) = 4𝑎𝑦(ଶ)(𝑥)𝑦(ଷ)(𝑥) ⋯ ⋯ (𝐸𝑞. 23) 
By substituting, 

𝑦(ହ)(0) = 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Example 2: (3-order linear differential equation) 
(3) ( ) '( ) 0f x f x   with initial values (3)(0) 0, '(0) 1, ''(0) 0, (0) 1f f f f      

 
(Note: ( ) sinf x x is validated to be the actual solution of this equation. ) 
 
How about the simulation result of the algorithm? 
***python code*** 
import numpy as np 
import matplotlib.pyplot as plt 
x=np.arange(0,10,0.1)  # h=0.1 
actualSolutionValue=np.sin(x) # the known actual code directly calling for numpy built-in log 
functions 
# value arrays for f(x), f’(x), f’’(x) 
f_0_of_x=x*0 
f_1_of_x=x*0 
f_2_of_x=x*0 
f_3_of_x=x*0 
 
# initial value of f(x),f’(x),f’’(x) at x=0 (coincidently, corresponding to n=0) 
f_0_of_x[0]=0 
f_1_of_x[0]=1 
f_2_of_x[0]=0 
f_3_of_x[0]=-1 
 
 
h=x[1]-x[0] 
 
#body of iterative algorithm 
n=0 
while n<len(x)-1: 
     
      f_0_of_x[n+1]=f_1_of_x[n]*h+f_0_of_x[n] 
      f_1_of_x[n+1]=f_2_of_x[n]*h+f_1_of_x[n] 
      f_2_of_x[n+1]=f_3_of_x[n]*h+f_2_of_x[n] 
      f_3_of_x[n+1]=-f_1_of_x[n+1] 
 
      n=n+1 
 
# compare the plotting of known actual solution and constructed function by iterative algorith,  
plt.plot(x,f_0_of_x,'b')      
plt.plot(x,actualSolutionValue,'*r') 
plt.show() 



 

  
After reducing h to 1/10*h 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           



 

Example 3: (2-order nonlinear differential equation) 
ଵ

௙"(௫)
+ cos൫𝑓ᇱ(𝑥)൯ + 𝑒௙(௫)ିଶ௫ = −𝑥ଶ + 𝑐𝑜𝑠

ଵ

௫
+

௫

௘మೣ
    with initial values  

1 1
(2) ln 2, '(2) , ''(2)

2 4
f f f     

(Note: ( ) lnf x x  is validated to be the actual solution of this equation.)  
 
How about the simulation result of the algorithm? 
***python code*** 
import numpy as np 
import matplotlib.pyplot as plt 
 
x=np.arange(2,10,0.0001) 
fxValue=np.log(x) 
 
#1/f''(x)+cos(f'(x))+exp(f(x)-2x)=-x^2+cos(1/x)+x/e^2x 
 
h=x[1]-x[0] 
f_0_of_x=x*0 
f_1_of_x=x*0 
f_2_of_x=x*0 
f_3_of_x=x*0 
 
f_0_of_x[0]=np.log(2) 
f_1_of_x[0]=1/2 
f_2_of_x[0]=-1/4 
 
n=0 
while n<len(x)-1: 
      f_0_of_x[n+1]=f_1_of_x[n]*h+f_0_of_x[n] 
      f_1_of_x[n+1]=f_2_of_x[n]*h+f_1_of_x[n] 
      f_2_of_x[n+1]=1/(-np.cos(f_1_of_x[n+1])-np.exp(f_0_of_x[n+1]-2*x[n+1])-
(x[n+1])*(x[n+1])+np.cos(1/x[n+1])+x[n+1]/np.exp(2*x[n+1])) 
       
      n=n+1 
plt.plot(x,f_0_of_x,'*b')      
plt.plot(x,fxValue,'r') 
plt.show() 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Skydiving 

 
Mechanical Case (from University Physics Volume 1):  
https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/6-4-drag-force-and-
terminal-speed/) 
Consider a skydiver falling through air under the influence of gravity.  

 
The two forces acting on him are the force of gravity and the drag force (ignoring the small 
buoyant force).Drag force FD is proportional to the square of the speed of the object. 
Mathematically, 

21

2DF C Av  

where C is the drag coefficient, A is the area of the object facing the fluid, and ρρ is the density of 
the fluid. 
Assume the density of air is ρ=1.21kg/m3 A 75-kg skydiver descending head first has a cross-
sectional area of approximately A=0.18m2 and a drag coefficient of approximately C=0.70 

21

2netma F mg C Av     

21
( ) ( )

2
a t g C Av t

m
    

2
2

2

( ) 1 ( )
( )

2

d S t dS t
g C A

dt m dt
    

How can we find the time function of height, velocity and acceleration?  



 

Answer:  
(by python code) 
import numpy as np  # To handle mathematics and numerical array, numpy will be come in handy and have better memory-efficiency 
import matplotlib.pyplot as plt # To handle plot, matplotlib provide good I/O interfacce 
 
#parameters from the  https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/6-4-drag-force-and-terminal-speed/ 
C=0.7 
rho=1.21 
A=0.18 
m=75 
g=9.8 
 
timeResolution=1e-3 
t=np.arange(0,50,timeResolution)  # time array (0s~50S) 
 
S_0_of_t=t*0 # displacement (height) array 
S_1_of_t=t*0 # velocity: 1st derivative of displacement 
S_2_of_t=t*0 #accelration: 2nd derivative of dispalcement  
 
timeTojump=1 # the timestamp for the sky diver to jump out of airplane 
for n in range(0,int(timeTojump/timeResolution),1):# the initial values of displacemnet. We only need the lastest 3 values for 2-order differential 
equation 
    S_0_of_t[n]=5000 
for n in range(1,int(timeTojump/timeResolution),1):  # get the 1-order derivatives. We only need the lastest 2 of them,in fact.  
    S_1_of_t[n]=(S_0_of_t[n]-S_0_of_t[n-1])/timeResolution 
for n in range(2,int(timeTojump/timeResolution),1):   # get the 2-order derivatives. We only need the lastest 1 of them,in fact.   
    S_2_of_t[n]=(S_1_of_t[n]-S_1_of_t[n-1])/timeResolution     
 
 
 
#body of iterative algorithm 
n=int(timeTojump/timeResolution)-1 # this timestamp index is the very one when sky diver jumps to make the differential equation begin to 
apply   
while n<len(t)-1: 
     
      S_0_of_t[n+1]=S_1_of_t[n]*timeResolution+S_0_of_t[n] 
      S_1_of_t[n+1]=S_2_of_t[n]*timeResolution+S_1_of_t[n] 
      S_2_of_t[n+1]=-g+(1/2)/m*C*rho*A*S_1_of_t[n+1]*S_1_of_t[n+1] # Nonlinear differential equation to define displacement 
 
      n=n+1 
 
# result plotting 
plt.plot(t,S_0_of_t,'b')     #plot displacement(height) 
plt.title("Height vs Time") 
plt.show()  
plt.plot(t,S_1_of_t,'b')     #plot velocity 
plt.title("Velocity vs Time") 
plt.show()  
plt.plot(t,S_2_of_t,'b')     #plot acceleration 
plt.title("Acceleration vs Time") 
plt.show() 



 

 
The terminal velocity 98m/s matches the terminal velocity disclosed in the textbook. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Reference: 
1. IB Diploma Programme Physics Higher level Paper 1 Friday 6 May 2016 (morning) 

M16/4/PHYSI/HPM/ENG/TZ0/XX, Question 2  
http://ibpastpapers.com/ib-past-papers-12/ or  https://mega.nz/fm/HAoDwAJK 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

(2) Drag force and terminal speed 
https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/6-4-drag-force-

and-terminal-speed/ 

 
 
(3) 
Solutions of 1st order differential equation from Haeses 

൬
Chapter 25, Diffrential Equations

from Mathematics −  Analysis and Approaches HL 2 −  Haese 2019 . ,
൰, 

startimg fropm page 685  
 
(4) 
Solutions of 2nd order differential equation from Thomas’ Calculus 
  

൬
Chapter 17, SECOND − ORDER DIFFERENTIAL EQUATIONS

from Thomas′ Calculus by George B. Thomas, Jr.
൰, 

starting from page 1 
http://www.math.wisc.edu/~passman/Thomas12e_WebChap17.pdf


