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Introduction 

 

     Since returning from Seed of Hope program, I have been haunted 

with the miserable lives that people live in an overpopulated nation. I am 

eager to do something for them right away. 

 Population control is pressing to prevent from further over-

competition on limited resources on the planet. Essentially, our society needs 

an appropriate tool or model to accurately evaluate and estimate the 

effectiveness of any control plan. The prevailing one is Logistic Growth Model. 

It will be constructive to the world if I could explore a way to enhance the 

estimation accuracy on the model or those inherited from it.             

Since China has the world's largest population (1.42 billion), followed 

by India (1.35 billion), they will be the good work examples of my exploration; 

we could also learn the effectiveness of their population control. 

 

      

Research 

 

     Estimation accuracy matters for governmental control plans. It relies on 

good mathematical model which could, with parameters sophisticatedly tuned, 

fit well the collected population data.  

Pierre François Verhulst, a Belgian mathematician, published his 

equation to model population growth under limited resource in 1838: 

  
ௗே

ௗ௧
= 𝑟𝑁 − 𝛼𝑁ଶ 

where N represents number of individuals at time t, r is the intrinsic growth 

rate, and 𝛼 is the density-dependent crowding effect (also known as 

intraspecific competition). In this equation, the population equilibrium referred 

to as the carrying capacity, K, is 

𝐾 =
௥

ఈ
. 
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His equation was popularized by Raymond Pearl and Lowell Reed to 

make the well-known one now,  

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) 

where N represents number of individuals at time t, 𝑟 the intrinsic 

growth rate and 𝐾 the maximum population size that can be supported by the 

environment (carrying capacity) (Cramer, J.S. 2002).  

In this exploration, I adopt P(t) to replace N to reflect the population 

function of time, as prof. Gilbert Strang from Massachusetts Institute of 

Technology (MIT) and popular Wikipedia did. 

 
ௗ௉(௧)

ௗ௧
= 𝑟𝑃(𝑡) ∙ ቀ1 −

௉(௧)

௄
ቁ,   

This differential equation is resolved to have solution, 

  𝑃(𝑡) =
௄

ଵା௘షೝ(೟ష೟೚)
 ,  

where 𝑡௢ is a constant determined by the initial condition. (Strang, G. 

Herman, E.J. (2019)) 

 

However, getting a solution of any modified Logistic Growth Model often 

involves sophisticated skills to resolve a variant from the original differential 

equation. I have hardly found successful attempts except the following paper 

from Yao-Zheng (Zeng, Y. (2006)).   

Assistant Professor Yao-Zheng from Northern Illinois University asserts 

she could leverage power exponent models which are widely used in scientific 

and engineering. She builds a variant from Logistic Growth model to be, 

 
ௗ௉(௧)

ௗ௧
= 𝑟𝑃(𝑡) ∙ (𝐾 − 𝑃(𝑡))ఈ,  

where P(t) represents the population at time t, 𝑟 the intrinsic growth rate and 
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𝐾 the carrying capacity; 𝛼 is a constant with which she tries to reflect complex 

circumstance . She claims to have the solution of this equation in analytic 

form. However, even for 𝛼 as integers, she is not able to present a solution 

consisting of fundamental functions but only able to simply the differential 

equation to another equation not calling for differential operation, as shown 

below,. (Figure.1). It must be way more complicated for the cases of fractional 

𝛼 , which she doesn’t mention in her paper. 

Figure.1  

 

To resolve the equation shown in Figure 1, it calls for a graphic calculator to 

approach the solution by plotting the left and right functions respectively and 

then finding the intersection point. We could only work out a unique point, if 

any, each time. We could only list the point solution in table format as Y. 

Zheng does in her report. (Figure.2). It turns out we cannot infer the estimated 

curve which fits the collected data.  

 

Figure.2 The table in which Y. Zheng put her point solutions.  

 

Yao-Zheng’s Solutions of her Power Exponent Model, ௗ௉(௧)

ௗ௧
= 𝑟𝑃(𝑡) ∙ (𝐾 − 𝑃(𝑡))ఈ  
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The difficulty to resolve differential equations detains a scientist from 

making progress in his research if he does not come from an advanced math 

background.  

 

Aim: To make easy the approach to resolve the logistic growth model variants  

     By proposing a new model and introducing the procedure to resolve the 

corresponding differential equation, this report records a novel methodology 

which gets rid of mathematical barrier and help all the ecologists freely 

propose new modifications on logistics models. Accordingly, an ecologist  

could verify the estimation accuracy easily and observe the fitting curve to get 

the scientific sense at the same time.   

    I will leverage a way , point-by-point method, which I developed on my 

own for resolving N-order differential equations before (Wu, Troy 

(2020)).Without the necessity to get a solution in an analytic form, it becomes 

easy to handle any variety of logistic modeling in form of  
ௗ௉(௧)

ௗ௧
= 𝐺(𝑃(𝑡), 𝑡).  

Introduction on Point-by-Point Method 

 According to first principle,  

𝑦′(𝑥௜) =
ௗ௬(௫)

ௗ௫
|௫ୀ௫೔

= lim
௛→଴

௬(௫೔ା௛)ି௬(௫೔)

௛
 ,∀𝑥௜ ∈ 𝑑𝑜𝑚𝑖𝑎𝑛  

, we have equivalently 

𝑦ᇱ(𝑥௜) =
௬(௫೔ା௛)ି௬(௫೔)

௛
, 𝑤ℎ𝑒𝑟𝑒 ℎ → 0,∀𝑥௜ ∈ 𝑑𝑜𝑚𝑖𝑎𝑛  

 

After rearrangement, it tells us : 

𝑦(𝑥௜ + ℎ) = 𝑦(𝑥௜) + ℎ ∙ 𝑦′(𝑥௜),  where ℎ → 0 

 

When we apply it to resolve a differential equation, 
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𝑦′(𝑥) = 𝐺൫𝑦(𝑥)൯   , ,where G is any given function 

, it becomes  

𝑦(𝑥௜ + ℎ) = 𝑦(𝑥௜) + ℎ ∙ 𝑦ᇱ(𝑥௜) = 𝑦(𝑥௜) + ℎ ∙ 𝐺(𝑦(𝑥௜)) 

 

If 𝑦(𝑥௢) is known as initial condition, then setting  𝑥௜ = 𝑥௢ and by  

𝑦(𝑥௜ + ℎ) = 𝑦(𝑥௜) + ℎ ∙ 𝐺൫𝑦(𝑥௜)൯ 

→ 𝑦(𝑥଴ + ℎ) = 𝑦(𝑥଴) + ℎ ∙ 𝐺(𝑦(𝑥଴)) 

,we could know the value of 𝑦(𝑥଴ + ℎ) from given 𝑦(𝑥଴) 

 

For 𝑥௜ to increase by ℎ, i.e. 𝑥௜ = 𝑥௢ + ℎ, by  

𝑦(𝑥௜ + ℎ) = 𝑦(𝑥௜) + ℎ ∙ 𝐺(𝑦(𝑥௜)) 

→ 𝑦((𝑥଴ + ℎ) + ℎ) = 𝑦(𝑥଴ + ℎ) + ℎ ∙ 𝐺(𝑦(𝑥଴ + ℎ))  

→ 𝑦(𝑥଴ + 2ℎ) = 𝑦(𝑥଴ + ℎ) + ℎ ∙ 𝐺(𝑦(𝑥଴ + ℎ))  

,we could know the value of 𝑦(𝑥଴ + 2ℎ) from given 𝑦(𝑥଴) and learned 

𝑦(𝑥଴ + ℎ) 

 

For 𝑥௜ to increase by another ℎ, i.e. 𝑥௜ = 𝑥௢ + 2ℎ, by  

𝑦(𝑥௜ + ℎ) = 𝑦(𝑥௜) + ℎ ∙ 𝐺(𝑦(𝑥௜)) 

→ 𝑦((𝑥଴ + 2ℎ) + ℎ) = 𝑦(𝑥଴ + 2ℎ) + ℎ ∙ 𝐺(𝑦(𝑥଴ + 2ℎ))  

→ 𝑦(𝑥଴ + 3ℎ) = 𝑦(𝑥଴ + 2ℎ) + ℎ ∙ 𝐺(𝑦(𝑥଴ + 2ℎ))  

,we could know the value of 𝑦(𝑥଴ + 3ℎ) from given 𝑦(𝑥଴) and learned 

𝑦(𝑥଴ + ℎ), 𝑦(𝑥଴ + 2ℎ) 

……… 

For 𝑥௜ to. reach 𝑥௜ = 𝑥௢ + (𝑘 − 1)ℎ, by  

𝑦(𝑥௜ + ℎ) = 𝑦(𝑥௜) + ℎ ∙ 𝐺(𝑦(𝑥௜)) 

→ 𝑦((𝑥଴ + (𝑘 − 1)ℎ) + ℎ) = 𝑦(𝑥଴ + (𝑘 − 1)ℎ) + ℎ ∙ 𝐺(𝑦(𝑥଴ + (𝑘 − 1)ℎ))  
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→ 𝑦(𝑥଴ + 𝑘ℎ) = 𝑦(𝑥଴ + (𝑘 − 1)ℎ) + ℎ ∙ 𝐺(𝑦(𝑥଴ + (𝑘 − 1)ℎ))  

,we could know the value of 𝑦(𝑥଴ + 𝑘ℎ) from given 𝑦(𝑥଴) and learned 

𝑦(𝑥଴ + ℎ), 𝑦(𝑥଴ + 2ℎ)…. 𝑦(𝑥଴ + (𝑘 − 1)ℎ) 

 

Being able to know 𝑦(𝑥଴ + 𝑘ℎ) for a very small h and any integer k 

equivalently means that we could learn 𝑦(𝑥), ∀𝑥 𝑖𝑛 𝑑𝑜𝑚𝑎𝑖𝑛  becasue we could 

always express any 𝑥 as  𝑥 = 𝑥଴ + 𝑘ℎ  

 Below is a picture to visualize the process, starting from initial condition 

 

The demonstrated process could be generalized to resolve any N-order 

differential equation which is in the form of  

𝑦(௡)(𝑥) = 𝐺(𝑦(଴)(𝑥), 𝑦(ଵ)(𝑥), … , 𝑦(௡ିଵ)(𝑥)) 

, where G(x) is any well-defined function,  

(e.g.,𝑦(ଶ)(𝑥) = ඥsin (𝑦(𝑥) + 𝑏(𝑦′(𝑥))ଶ  ) 

                   

With the given 𝑦(଴)(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴) and well-defined 

function G, below is the generalized procedure of the Point-by-Point Method,  

.  
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Point-by-Point Method to resolve 𝑦(௡)(𝑥) = 𝐺 ቀ𝑦(଴)(𝑥), 𝑦(ଵ)(𝑥), … , 𝑦(௡ିଵ)(𝑥)ቁ 

(Wu, Troy (2020)) 

Given differential equation 

 𝑦(௡)(𝑥) = 𝐺(𝑦(଴)(𝑥), 𝑦(ଵ)(𝑥), 𝑦(ଶ)(𝑥), ⋯ , 𝑦(௡ିଵ)(𝑥)) 

with initial condition 𝑦(଴)(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴) 

, below is the procedure to get the solution which consists of the target 𝑦(𝑥)  

value together with those 𝑦(𝑥௜), ∀𝑥௜ ∈ (𝑥଴, 𝑥)   

 

Step#1:  Get 𝑦(௡)(𝑥଴)   by   

𝑦(௡)(𝑥଴) = 𝐺(𝑦(଴)(𝑥଴), 𝑦(ଵ)(𝑥଴), 𝑦(ଶ)(𝑥଴), ⋯ , 𝑦(௡ିଵ)(𝑥଴)) 
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Step#2:  Get  𝑦(଴)(𝑥଴ + ℎ), 𝑦(ଵ)(𝑥଴ + ℎ), 𝑦(ଶ)(𝑥଴ + ℎ), ⋯ , 𝑦(௡ିଵ)(𝑥଴ + ℎ) by   

        𝑦(଴)(𝑥଴ + ℎ) = 𝑦(଴)(𝑥଴) + 𝑦(ଵ)(𝑥଴) × ℎ 

                                   𝑦(ଵ)(𝑥଴ + ℎ) = 𝑦(ଵ)(𝑥଴) + 𝑦(ଶ)(𝑥଴) × ℎ 

                                   𝑦(ଶ)(𝑥଴ + ℎ) = 𝑦(ଶ)(𝑥଴) + 𝑦(ଷ)(𝑥଴) × ℎ 

                                   ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

                                   𝑦(௡ିଶ)(𝑥଴ + ℎ) = 𝑦(௡ିଶ)(𝑥଴) + 𝑦(௡ିଵ)(𝑥଴) × ℎ 

                                   𝑦(௡ିଵ)(𝑥଴ + ℎ) = 𝑦(௡ିଵ)(𝑥଴) + 𝑦(௡)(𝑥଴) × ℎ 
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Step#3:  Until 𝑥 = 𝑥଴ , assign 𝑥଴ with the new value (𝑥଴ + ℎ). Go to Step#1 
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Take the logistic growth equation to the work example: 

𝑃ᇱ(𝑡) = 𝑟 ∙ 𝑃(𝑡) ∙ ൬1 −
𝑃(𝑡)

𝐾
൰      , ∀𝑡 

 With 𝑃(0) given as the initial condition, we know: 

𝑃ᇱ(ℎ) = 𝑟 ∙ 𝑃(0) ∙ ൬1 −
𝑃(0)

𝐾
൰ 

Then we can proceed to know 𝑃(ℎ) by 

𝑃(ℎ) = 𝑃(0) + ℎ ∙ 𝑃ᇱ(0) = 𝑃(0) + 𝑟 ∙ 𝑃(0) ∙ (1 −
௉(଴)

௄
).  

With 𝑃(ℎ) acquired, we learn by the given differential equation: 

𝑃ᇱ(ℎ) = 𝑟 ∙ 𝑃(ℎ) ∙ ൬1 −
𝑃(ℎ)

𝐾
൰ 

Then we can proceed to know 𝑃(2ℎ) by  

𝑃(2ℎ) = 𝑃(ℎ) + ℎ ∙ 𝑃ᇱ(ℎ) = 𝑃(ℎ) + 𝑟 ∙ 𝑃(ℎ) ∙ (1 −
௉(௛)

௄
).  

With 𝑃(2ℎ) acquired, we learn by the given differential equation: 

𝑃ᇱ(2ℎ) = 𝑟 ∙ 𝑃(2ℎ) ∙ ൬1 −
𝑃(2ℎ)

𝐾
൰ 

Then we can proceed to know 𝑃(3ℎ) by  

𝑃(3ℎ) = 𝑃(2ℎ) + ℎ ∙ 𝑃ᇱ(2ℎ) = 𝑃(2ℎ) + 𝑟 ∙ 𝑃(2ℎ) ∙ (1 −
௉(ଶ௛)

௄
).  

 The way could be iteratively applied to the target time 𝑡 = 𝑘ℎ, ∀𝑡  to learn 

𝑃(𝑡). 
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Proposal for an improved Logistic Growth Model 

 

To address the practical need for better accuracy and also demonstrate 

how my methodology works, I would like to provide a new variant from original 

Logistic Model:  

 
ௗ௉(௧)

ௗ௧
= 𝑟 ∙ 𝑃(𝑡) ∙ (1 −

௉(௧)ାఈ∙௉మ(௧)

௄
)   

where 𝑃(𝑡) is the population function of time, 𝑟 is the intrinsic growth rate, 

𝐾 is the carrying capacity and 𝛼 is a positive coefficient to reflect complex 

ecologist circumstance.  

It is next to impossible for my model to work worse because the typical 

Logistic Growth is just one special case in my model. If better accuracy is 

acquired with the 𝛼  value different from 0, it shows I have hit an improved 

model. If optimal 𝛼 turns out to be zero, it just proves the logistic growth 

mode truly endure the trials. Both cases are meaningful. Besides, if my model 

and methodology work, it is applicable for further improvement by trying out 

additional terms into the model , i.e. 

  
ௗ௉(௧)

ௗ௧
= 𝑟 ∙ 𝑃(𝑡) ∙ (1 −

௉(௧)ାఈ∙௉మ(௧)ାఉ∙௉య(௧)ା⋯

௄
), 
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Algorithm Implementation  

 

    Given initial point 𝑃(𝑡଴), 𝑟, 𝐾 and 𝛼, below are the steps to carry out my 

point-to-point method to resolve my new variant of logistic growth model,  

ௗ௉(௧)

ௗ௧
= 𝑟 ∙ 𝑃(𝑡) ∙ (1 −

௉(௧)ାఈ∙௉మ(௧)

௄
) 

Step 0: Set 𝑛 = 0 

Step 1:Get 𝑃ᇱ(𝑡଴ + 𝑛ℎ) by 𝑃ᇱ(𝑡௢ + 𝑛ℎ) = 𝑟𝑃(𝑡଴ + 𝑛ℎ)(1 −
௉(௧బା௡௛)ାఈ௉మ(௧బା௡௛)

௄
) 

Step 2:Get 𝑃(𝑡଴ + (𝑛 + 1)ℎ) by 𝑃(𝑡଴ + (𝑛 + 1)ℎ) = 𝑃(𝑡଴ + 𝑛ℎ) + ℎ ∙ 𝑃′(𝑡଴ +

𝑛ℎ) 

Step 3: Increase n by 1 and go to Step 1 till satisfactory coverage. 

Step 4. Pick the population data corresponding to each year and get Root 

Mean Square Error (RMSE) calculated. 

 

    The condition of Point-to-Point Method requires the time interval ,ℎ, to be 

very small. I chop one year into divisions as small as possible until further 

division makes no difference. After building the curve, I conduct down-

sampling to collect the estimation data that corresponds to each integer year. 

The sampled data is compared with the practical one through Root Mean 

Square Error (RMSE) which is a frequently used measure of the differences 

between estimated and observed values. The less RMSE, the better 

estimation.  

The” initial value of start point 𝑃(𝑡଴), 𝑟, 𝐾 and 𝛼” will be searched in four 

dimensions to get the minimum RMSE.  
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Data Analysis 

 

        In this article, I used “year 1960” as the start point. I also built the 

curve backward to have a better traceability. 

(A) China: 

With the population data of China, here is the accuracy comparison 

between the various modellings. 

1. For the Logistics Growth Model proposed by Pierre-Francois Verhulst, 

 
ௗ௉

ௗ௧
= 𝑟𝑃(1 −

௉

௄
) 

, where 𝑃(𝑡) is the population function of time, 𝑟 is the intrinsic growth rate 

and 𝐾 is the carrying capacity 

, the minimum RMSE is 1.263% 

 

2. For the improved Logistics Growth Model from Yao Zheng,  

   
ௗ௉

ௗ௧
= 𝑟𝑃(1 −

௉

௄
)ఈ  

,where 𝑃(𝑡) is the population function of time, 𝑟 is the intrinsic growth 

rate, 𝐾 is the carrying capacity and 𝛼 is the coefficient to reflect complex 
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environment,  

the minimum RMSE is 1.244% 

 

3. For the improved Logistics Growth Model that I proposed, 

  
ௗ௉

ௗ௧
= 𝑟𝑃(1 −

௉ାఈ௉మ

௄
)  

,where 𝑃(𝑡) is the population function of time, r is the intrinsic growth rate, 

K is the carrying capacity and 𝛼 is the coefficient to reflect complex 

environment, 

the minimum RMSE is 1.216% 
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Model 

Source  

Model Type 

Carrying 

Capacity 

K 

 Growth 

Rate 

r 

Parameter of          

New Model 

Minimum 

RMSE 

Typical 

 

  

 

2.295 0.046 

 

  

 

1.263% 

Published 

by           

Yao-Zheng 

 

    

 

2.295 0.047 
 

1.244% 

My 

proposal  

 

   

 

2.795 0.043 
 

1.216% 

Table 1: Comparison between various models for China 

 

(B) India: 

With the population data of India, here is the accuracy comparison 

between the various modellings. 

1. For the Logistics Growth Model proposed by Pierre-Francois Verhulst, 

 
ௗ௉

ௗ௧
= 𝑟𝑃(1 −

௉

௄
) 

, where 𝑃(𝑡) is the population function of time, 𝑟 is the intrinsic growth rate 

and 𝐾 is the carrying capacity 

, the minimum RMSE is 1.632% 

𝛼 = 1.02

𝑁/𝐴

𝛼 = 0.11
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2. For the improved Logistics Growth Model from Yao Zheng,  

   
ௗ௉

ௗ௧
= 𝑟𝑃(1 −

௉

௄
)ఈ  

,where 𝑃(𝑡) is the population function of time, 𝑟 is the intrinsic growth 

rate, 𝐾 is the carrying capacity and 𝛼 is the coefficient to reflect complex 

environment,  

the minimum RMSE is 1.625% 
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3. For the improved Logistics Growth Model that I proposed, 

  
ௗ௉

ௗ௧
= 𝑟𝑃(1 −

௉ାఈ௉మ

௄
)  

,where 𝑃(𝑡) is the population function of time, r the intrinsic growth rate, 

K the carrying capacity and 𝛼 the coefficient to reflect complex 

environment, 

the minimum RMSE is 1.430% 
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Model 

Source  

Model Type 

Carrying 

Capacity 

K 

 Growth 

Rate 

r 

Parameter of          

New Model 

Minimum 

RMSE 

Typical 

 

  

 

4.633 0.034 

 

  

 

1.632% 

Published 

by           

Yao-Zheng 

 

    

 

4.733 0.033 
 

1.625% 

My 

proposal  

 

   

 

6.033 0.032 
 

1.430% 

Table 2: Comparison between various models for India 

 

It demonstrates that my algorithm to resolve differential equation 

works for all models. Besides, both Table 1 and Table 2 show my proposed 

model has the least estimation error.  

 

 

 

 

 

 

 

𝛼 = 0.97

𝑁/𝐴

𝛼 = 0.09
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Conclusion 

 

My model has the least root mean square error to reflect that better 

accuracy is acquired with my proposed model.  However, my proposing 

model to beat others existing is not the purpose of this exploration. Instead, I’d 

like to highlight the merit of my algorithm that makes the model-proposing and 

the model-verification easier for scientists. Also, it is demonstrated that ,by 

adding more terms, we can easily improve a model in the differential equation 

when the handling math is made simple.  

Besides, I’d like to highlight the merit that my method tells where the the 

sample data stand along the fitting curve. For instance, we could observe 

China population is way closed than India to the carrying capacity which is set 

by nature or by government. It reflect China has truly conducted more 

effective population control, compared with India. 

I hope my exploration to bring any positive influence to the world. 
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